初识Java8中的Stream

lambda表达式是stream的基础,初学者建议先学习lambda表达式,http://www.jb51.net/article/121129.htm

1.初识stream

先来一个总纲:

东西就是这么多啦,stream是java8中加入的一个非常实用的功能,最初看时以为是io中的流(其实一点关系都没有),让我们先来看一个小例子感受一下:

@Before
public void init() {
 random = new Random();
 stuList = new ArrayList<Student>() {
 {
 for (int i = 0; i < 100; i++) {
 add(new Student("student" + i, random.nextInt(50) + 50));
 }
 }
 };
}
public class Student {
 private String name;
 private Integer score;
 //-----getters and setters-----
}
//1列出班上超过85分的学生姓名,并按照分数降序输出用户名字
@Test
public void test1() {
 List<String> studentList = stuList.stream()
 .filter(x->x.getScore()>85)
 .sorted(Comparator.comparing(Student::getScore).reversed())
 .map(Student::getName)
 .collect(Collectors.toList());
 System.out.println(studentList);
}

列出班上分数超过85分的学生姓名,并按照分数降序输出用户名字,在java8之前我们需要三个步骤:

1)新建一个List<Student> newList,在for循环中遍历stuList,将分数超过85分的学生装入新的集合中

2)对于新的集合newList进行排序操作

3)遍历打印newList

这三个步骤在java8中只需要两条语句,如果紧紧需要打印,不需要保存新生产list的话实际上只需要一条,是不是非常方便。

2.stream的特性

我们首先列出stream的如下三点特性,在之后我们会对照着详细说明

1.stream不存储数据

2.stream不改变源数据

3.stream的延迟执行特性

通常我们在数组或集合的基础上创建stream,stream不会专门存储数据,对stream的操作也不会影响到创建它的数组和集合,对于stream的聚合、消费或收集操作只能进行一次,再次操作会报错,如下代码:

@Test
public void test1(){
 Stream<String> stream = Stream.generate(()->"user").limit(20);
 stream.forEach(System.out::println);
 stream.forEach(System.out::println);
}

程序在正常完成一次打印工作后报错。

stream的操作是延迟执行的,在列出班上超过85分的学生姓名例子中,在collect方法执行之前,filter、sorted、map方法还未执行,只有当collect方法执行时才会触发之前转换操作

看如下代码:

public boolean filter(Student s) {
 System.out.println("begin compare");
 return s.getScore() > 85;
}

@Test
public void test() {
 Stream<Student> stream = Stream.of(stuArr).filter(this::filter);
 System.out.println("split-------------------------------------");
 List<Student> studentList = stream.collect(toList());
}

我们将filter中的逻辑抽象成方法,在方法中加入打印逻辑,如果stream的转换操作是延迟执行的,那么split会先打印,否则后打印,代码运行结果为

可见stream的操作是延迟执行的。

TIP:

当我们操作一个流的时候,并不会修改流底层的集合(即使集合是线程安全的),如果想要修改原有的集合,就无法定义流操作的输出。

由于stream的延迟执行特性,在聚合操作执行前修改数据源是允许的。

List<String> wordList;
 @Before
public void init() {
 wordList = new ArrayList<String>() {
 {
 add("a");
 add("b");
 add("c");
 add("d");
 add("e");
 add("f");
 add("g");
 }
 };
}
/**
 * 延迟执行特性,在聚合操作之前都可以添加相应元素
 */
@Test
public void test() {
 Stream<String> words = wordList.stream();
 wordList.add("END");
 long n = words.distinct().count();
 System.out.println(n);
}

最后打印的结果是8

如下代码是错误的

/**
 * 延迟执行特性,会产生干扰
 * nullPointException
 */
@Test
public void test2(){
 Stream<String> words1 = wordList.stream();
 words1.forEach(s -> {
 System.out.println("s->"+s);
 if (s.length() < 4) {
 System.out.println("select->"+s);
 wordList.remove(s);
 System.out.println(wordList);
 }
 });
}

结果报空指针异常

3.创建stream

1)通过数组创建

/**
 * 通过数组创建流
 */
@Test
public void testArrayStream(){
 //1.通过Arrays.stream
 //1.1基本类型
 int[] arr = new int[]{1,2,34,5};
 IntStream intStream = Arrays.stream(arr);
 //1.2引用类型
 Student[] studentArr = new Student[]{new Student("s1",29),new Student("s2",27)};
 Stream<Student> studentStream = Arrays.stream(studentArr);
 //2.通过Stream.of
 Stream<Integer> stream1 = Stream.of(1,2,34,5,65);
 //注意生成的是int[]的流
 Stream<int[]> stream2 = Stream.of(arr,arr);
 stream2.forEach(System.out::println);
}

2)通过集合创建流

/**
 * 通过集合创建流
 */
@Test
public void testCollectionStream(){
 List<String> strs = Arrays.asList("11212","dfd","2323","dfhgf");
 //创建普通流
 Stream<String> stream = strs.stream();
 //创建并行流
 Stream<String> stream1 = strs.parallelStream();
}

3)创建空的流

@Test
public void testEmptyStream(){
 //创建一个空的stream
 Stream<Integer> stream = Stream.empty();
}
4)创建无限流
@Test
public void testUnlimitStream(){
 //创建无限流,通过limit提取指定大小
 Stream.generate(()->"number"+new Random().nextInt()).limit(100).forEach(System.out::println);
 Stream.generate(()->new Student("name",10)).limit(20).forEach(System.out::println);
}

5)创建规律的无限流

/**
 * 产生规律的数据
 */
@Test
public void testUnlimitStream1(){
 Stream.iterate(0,x->x+1).limit(10).forEach(System.out::println);
 Stream.iterate(0,x->x).limit(10).forEach(System.out::println);
 //Stream.iterate(0,x->x).limit(10).forEach(System.out::println);与如下代码意思是一样的
 Stream.iterate(0, UnaryOperator.identity()).limit(10).forEach(System.out::println);
}

4.对stream的操作

1)最常使用

map:转换流,将一种类型的流转换为另外一种流

/**
 * map把一种类型的流转换为另外一种类型的流
 * 将String数组中字母转换为大写
 */
@Test
public void testMap() {
 String[] arr = new String[]{"yes", "YES", "no", "NO"};
 Arrays.stream(arr).map(x -> x.toLowerCase()).forEach(System.out::println);
}

filter:过滤流,过滤流中的元素

@Test
public void testFilter(){
 Integer[] arr = new Integer[]{1,2,3,4,5,6,7,8,9,10};
 Arrays.stream(arr).filter(x->x>3&&x<8).forEach(System.out::println);
}

flapMap:拆解流,将流中每一个元素拆解成一个流

/**
 * flapMap:拆解流
 */
@Test
public void testFlapMap1() {
 String[] arr1 = {"a", "b", "c", "d"};
 String[] arr2 = {"e", "f", "c", "d"};
 String[] arr3 = {"h", "j", "c", "d"};
 // Stream.of(arr1, arr2, arr3).flatMap(x -> Arrays.stream(x)).forEach(System.out::println);
 Stream.of(arr1, arr2, arr3).flatMap(Arrays::stream).forEach(System.out::println);
}

sorted:对流进行排序

String[] arr1 = {"abc","a","bc","abcd"};
/**
 * Comparator.comparing是一个键提取的功能
 * 以下两个语句表示相同意义
 */
@Test
public void testSorted1_(){
 /**
 * 按照字符长度排序
 */
 Arrays.stream(arr1).sorted((x,y)->{
 if (x.length()>y.length())
 return 1;
 else if (x.length()<y.length())
 return -1;
 else
 return 0;
 }).forEach(System.out::println);
 Arrays.stream(arr1).sorted(Comparator.comparing(String::length)).forEach(System.out::println);
}
/**
 * 倒序
 * reversed(),java8泛型推导的问题,所以如果comparing里面是非方法引用的lambda表达式就没办法直接使用reversed()
 * Comparator.reverseOrder():也是用于翻转顺序,用于比较对象(Stream里面的类型必须是可比较的)
 * Comparator. naturalOrder():返回一个自然排序比较器,用于比较对象(Stream里面的类型必须是可比较的)
 */
@Test
public void testSorted2_(){
 Arrays.stream(arr1).sorted(Comparator.comparing(String::length).reversed()).forEach(System.out::println);
 Arrays.stream(arr1).sorted(Comparator.reverseOrder()).forEach(System.out::println);
 Arrays.stream(arr1).sorted(Comparator.naturalOrder()).forEach(System.out::println);
}
/**
 * thenComparing
 * 先按照首字母排序
 * 之后按照String的长度排序
 */
@Test
public void testSorted3_(){
 Arrays.stream(arr1).sorted(Comparator.comparing(this::com1).thenComparing(String::length)).forEach(System.out::println);
}
public char com1(String x){
 return x.charAt(0);
}

2)提取流和组合流

@Before
 public void init(){
 arr1 = new String[]{"a","b","c","d"};
 arr2 = new String[]{"d","e","f","g"};
 arr3 = new String[]{"i","j","k","l"};
 }
 /**
 * limit,限制从流中获得前n个数据
 */
 @Test
 public void testLimit(){
 Stream.iterate(1,x->x+2).limit(10).forEach(System.out::println);
 }
 /**
 * skip,跳过前n个数据
 */
 @Test
 public void testSkip(){
// Stream.of(arr1).skip(2).limit(2).forEach(System.out::println);
 Stream.iterate(1,x->x+2).skip(1).limit(5).forEach(System.out::println);
 }
 /**
 * 可以把两个stream合并成一个stream(合并的stream类型必须相同)
 * 只能两两合并
 */
 @Test
 public void testConcat(){
 Stream<String> stream1 = Stream.of(arr1);
 Stream<String> stream2 = Stream.of(arr2);
 Stream.concat(stream1,stream2).distinct().forEach(System.out::println);
 }

3)聚合操作

@Before
public void init(){
 arr = new String[]{"b","ab","abc","abcd","abcde"};
}
/**
 * max、min
 * 最大最小值
 */
@Test
public void testMaxAndMin(){
 Stream.of(arr).max(Comparator.comparing(String::length)).ifPresent(System.out::println);
 Stream.of(arr).min(Comparator.comparing(String::length)).ifPresent(System.out::println);
}
/**
 * count
 * 计算数量
 */
@Test
public void testCount(){
 long count = Stream.of(arr).count();
 System.out.println(count);
}
/**
 * findFirst
 * 查找第一个
 */
@Test
public void testFindFirst(){
 String str = Stream.of(arr).parallel().filter(x->x.length()>3).findFirst().orElse("noghing");
 System.out.println(str);
}
/**
 * findAny
 * 找到所有匹配的元素
 * 对并行流十分有效
 * 只要在任何片段发现了第一个匹配元素就会结束整个运算
 */
@Test
public void testFindAny(){
 Optional<String> optional = Stream.of(arr).parallel().filter(x->x.length()>3).findAny();
 optional.ifPresent(System.out::println);
}
/**
 * anyMatch
 * 是否含有匹配元素
 */
@Test
public void testAnyMatch(){
 Boolean aBoolean = Stream.of(arr).anyMatch(x->x.startsWith("a"));
 System.out.println(aBoolean);
}
@Test
public void testStream1() {
 Optional<Integer> optional = Stream.of(1,2,3).filter(x->x>1).reduce((x,y)->x+y);
 System.out.println(optional.get());
}

4)Optional类型

通常聚合操作会返回一个Optional类型,Optional表示一个安全的指定结果类型,所谓的安全指的是避免直接调用返回类型的null值而造成空指针异常,调用optional.ifPresent()可以判断返回值是否为空,或者直接调用ifPresent(Consumer<? super T> consumer)在结果部位空时进行消费操作;调用optional.get()获取返回值。通常的使用方式如下:

@Test
 public void testOptional() {
 List<String> list = new ArrayList<String>() {
 {
 add("user1");
 add("user2");
 }
 };
 Optional<String> opt = Optional.of("andy with u");
 opt.ifPresent(list::add);
 list.forEach(System.out::println);
 }

使用Optional可以在没有值时指定一个返回值,例如

@Test
public void testOptional2() {
 Integer[] arr = new Integer[]{4,5,6,7,8,9};
 Integer result = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElse(-1);
 System.out.println(result);
 Integer result1 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseGet(()->-1);
 System.out.println(result1);
 Integer result2 = Stream.of(arr).filter(x->x>9).max(Comparator.naturalOrder()).orElseThrow(RuntimeException::new);
 System.out.println(result2);
}

Optional的创建

采用Optional.empty()创建一个空的Optional,使用Optional.of()创建指定值的Optional。同样也可以调用Optional对象的map方法进行Optional的转换,调用flatMap方法进行Optional的迭代

@Test
public void testStream1() {
 Optional<Student> studentOptional = Optional.of(new Student("user1",21));
 Optional<String> optionalStr = studentOptional.map(Student::getName);
 System.out.println(optionalStr.get());
}
public static Optional<Double> inverse(Double x) {
 return x == 0 ? Optional.empty() : Optional.of(1 / x);
}
public static Optional<Double> squareRoot(Double x) {
 return x < 0 ? Optional.empty() : Optional.of(Math.sqrt(x));
}
/**
 * Optional的迭代
 */
@Test
public void testStream2() {
 double x = 4d;
 Optional<Double> result1 = inverse(x).flatMap(StreamTest7::squareRoot);
 result1.ifPresent(System.out::println);
 Optional<Double> result2 = Optional.of(4.0).flatMap(StreamTest7::inverse).flatMap(StreamTest7::squareRoot);
 result2.ifPresent(System.out::println);
}

5)收集结果

Student[] students;
@Before
public void init(){
 students = new Student[100];
 for (int i=0;i<30;i++){
 Student student = new Student("user",i);
 students[i] = student;
 }
 for (int i=30;i<60;i++){
 Student student = new Student("user"+i,i);
 students[i] = student;
 }
 for (int i=60;i<100;i++){
 Student student = new Student("user"+i,i);
 students[i] = student;
 }
}
@Test
public void testCollect1(){
 /**
 * 生成List
 */
 List<Student> list = Arrays.stream(students).collect(toList());
 list.forEach((x)-> System.out.println(x));
 /**
 * 生成Set
 */
 Set<Student> set = Arrays.stream(students).collect(toSet());
 set.forEach((x)-> System.out.println(x));
 /**
 * 如果包含相同的key,则需要提供第三个参数,否则报错
 */
 Map<String,Integer> map = Arrays.stream(students).collect(toMap(Student::getName,Student::getScore,(s,a)->s+a));
 map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
 * 生成数组
 */
@Test
public void testCollect2(){
 Student[] s = Arrays.stream(students).toArray(Student[]::new);
 for (int i=0;i<s.length;i++)
 System.out.println(s[i]);
}
/**
 * 指定生成的类型
 */
@Test
public void testCollect3(){
 HashSet<Student> s = Arrays.stream(students).collect(toCollection(HashSet::new));
 s.forEach(System.out::println);
}
/**
 * 统计
 */
@Test
public void testCollect4(){
 IntSummaryStatistics summaryStatistics = Arrays.stream(students).collect(Collectors.summarizingInt(Student::getScore));
 System.out.println("getAverage->"+summaryStatistics.getAverage());
 System.out.println("getMax->"+summaryStatistics.getMax());
 System.out.println("getMin->"+summaryStatistics.getMin());
 System.out.println("getCount->"+summaryStatistics.getCount());
 System.out.println("getSum->"+summaryStatistics.getSum());
}

6)分组和分片

分组和分片的意义是,将collect的结果集展示位Map<key,val>的形式,通常的用法如下:

Student[] students;
@Before
public void init(){
 students = new Student[100];
 for (int i=0;i<30;i++){
 Student student = new Student("user1",i);
 students[i] = student;
 }
 for (int i=30;i<60;i++){
 Student student = new Student("user2",i);
 students[i] = student;
 }
 for (int i=60;i<100;i++){
 Student student = new Student("user3",i);
 students[i] = student;
 }
}
@Test
public void testGroupBy1(){
 Map<String,List<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName));
 map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
 * 如果只有两类,使用partitioningBy会比groupingBy更有效率
 */
@Test
public void testPartitioningBy(){
 Map<Boolean,List<Student>> map = Arrays.stream(students).collect(partitioningBy(x->x.getScore()>50));
 map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
 * downstream指定类型
 */
@Test
public void testGroupBy2(){
 Map<String,Set<Student>> map = Arrays.stream(students).collect(groupingBy(Student::getName,toSet()));
 map.forEach((x,y)-> System.out.println(x+"->"+y));
}
/**
 * downstream 聚合操作
 */
@Test
public void testGroupBy3(){
 /**
 * counting
 */
 Map<String,Long> map1 = Arrays.stream(students).collect(groupingBy(Student::getName,counting()));
 map1.forEach((x,y)-> System.out.println(x+"->"+y));
 /**
 * summingInt
 */
 Map<String,Integer> map2 = Arrays.stream(students).collect(groupingBy(Student::getName,summingInt(Student::getScore)));
 map2.forEach((x,y)-> System.out.println(x+"->"+y));
 /**
 * maxBy
 */
 Map<String,Optional<Student>> map3 = Arrays.stream(students).collect(groupingBy(Student::getName,maxBy(Comparator.comparing(Student::getScore))));
 map3.forEach((x,y)-> System.out.println(x+"->"+y));
 /**
 * mapping
 */
 Map<String,Set<Integer>> map4 = Arrays.stream(students).collect(groupingBy(Student::getName,mapping(Student::getScore,toSet())));
 map4.forEach((x,y)-> System.out.println(x+"->"+y));
}

5.原始类型流

在数据量比较大的情况下,将基本数据类型(int,double...)包装成相应对象流的做法是低效的,因此,我们也可以直接将数据初始化为原始类型流,在原始类型流上的操作与对象流类似,我们只需要记住两点

1.原始类型流的初始化

2.原始类型流与流对象的转换

DoubleStream doubleStream;
 IntStream intStream;
 /**
 * 原始类型流的初始化
 */
 @Before
 public void testStream1(){
 doubleStream = DoubleStream.of(0.1,0.2,0.3,0.8);
 intStream = IntStream.of(1,3,5,7,9);
 IntStream stream1 = IntStream.rangeClosed(0,100);
 IntStream stream2 = IntStream.range(0,100);
 }
 /**
 * 流与原始类型流的转换
 */
 @Test
 public void testStream2(){
 Stream<Double> stream = doubleStream.boxed();
 doubleStream = stream.mapToDouble(Double::new);
 }

6.并行流

可以将普通顺序执行的流转变为并行流,只需要调用顺序流的parallel() 方法即可,如Stream.iterate(1, x -> x + 1).limit(10).parallel()。

1) 并行流的执行顺序

我们调用peek方法来瞧瞧并行流和串行流的执行顺序,peek方法顾名思义,就是偷窥流内的数据,peek方法声明为Stream<T> peek(Consumer<? super T> action);加入打印程序可以观察到通过流内数据,见如下代码:

public void peek1(int x) {
 System.out.println(Thread.currentThread().getName() + ":->peek1->" + x);
 }
 public void peek2(int x) {
 System.out.println(Thread.currentThread().getName() + ":->peek2->" + x);
 }
 public void peek3(int x) {
 System.out.println(Thread.currentThread().getName() + ":->final result->" + x);
 }
 /**
 * peek,监控方法
 * 串行流和并行流的执行顺序
 */
 @org.junit.Test
 public void testPeek() {
 Stream<Integer> stream = Stream.iterate(1, x -> x + 1).limit(10);
 stream.peek(this::peek1).filter(x -> x > 5)
 .peek(this::peek2).filter(x -> x < 8)
 .peek(this::peek3)
 .forEach(System.out::println);
 }
 @Test
 public void testPeekPal() {
 Stream<Integer> stream = Stream.iterate(1, x -> x + 1).limit(10).parallel();
 stream.peek(this::peek1).filter(x -> x > 5)
 .peek(this::peek2).filter(x -> x < 8)
 .peek(this::peek3)
 .forEach(System.out::println);
 }

串行流打印结果如下:

并行流打印结果如下:

咋看不一定能看懂,我们用如下的图来解释

我们将stream.filter(x -> x > 5).filter(x -> x < 8).forEach(System.out::println)的过程想象成上图的管道,我们在管道上加入的peek相当于一个阀门,透过这个阀门查看流经的数据,

1)当我们使用顺序流时,数据按照源数据的顺序依次通过管道,当一个数据被filter过滤,或者经过整个管道而输出后,第二个数据才会开始重复这一过程

2)当我们使用并行流时,系统除了主线程外启动了七个线程(我的电脑是4核八线程)来执行处理任务,因此执行是无序的,但同一个线程内处理的数据是按顺序进行的。

2) sorted()、distinct()等对并行流的影响

sorted()、distinct()是元素相关方法,和整体的数据是有关系的,map,filter等方法和已经通过的元素是不相关的,不需要知道流里面有哪些元素 ,并行执行和sorted会不会产生冲突呢?

结论:1.并行流和排序是不冲突的,2.一个流是否是有序的,对于一些api可能会提高执行效率,对于另一些api可能会降低执行效率

3.如果想要输出的结果是有序的,对于并行的流需要使用forEachOrdered(forEach的输出效率更高)

我们做如下实验:

/**
 * 生成一亿条0-100之间的记录
 */
@Before
public void init() {
 Random random = new Random();
 list = Stream.generate(() -> random.nextInt(100)).limit(100000000).collect(toList());
}
/**
 * tip
 */
@org.junit.Test
public void test1() {
 long begin1 = System.currentTimeMillis();
 list.stream().filter(x->(x > 10)).filter(x->x<80).count();
 long end1 = System.currentTimeMillis();
 System.out.println(end1-begin1);
 list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).count();
 long end2 = System.currentTimeMillis();
 System.out.println(end2-end1);
 long begin1_ = System.currentTimeMillis();
 list.stream().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
 long end1_ = System.currentTimeMillis();
 System.out.println(end1-begin1);
 list.stream().parallel().filter(x->(x > 10)).filter(x->x<80).distinct().sorted().count();
 long end2_ = System.currentTimeMillis();
 System.out.println(end2_-end1_);
}

可见,对于串行流.distinct().sorted()方法对于运行时间没有影响,但是对于串行流,会使得运行时间大大增加,因此对于包含sorted、distinct()等与全局数据相关的操作,不推荐使用并行流。

7.stream vs spark rdd

最初看到stream的一个直观感受是和spark像,真的像

val count = sc.parallelize(1 to NUM_SAMPLES).filter { _ =>
 val x = math.random
 val y = math.random
 x*x + y*y < 1}.count()println(s"Pi is roughly ${4.0 * count / NUM_SAMPLES}") 

以上代码摘自spark官网,使用的是scala语言,一个最基础的word count代码,这里我们简单介绍一下spark,spark是当今最流行的基于内存的大数据处理框架,spark中的一个核心概念是RDD(弹性分布式数据集),将分布于不同处理器上的数据抽象成rdd,rdd上支持两种类型的操作1) Transformation(变换)2) Action(行动),对于rdd的Transformation算子并不会立即执行,只有当使用了Action算子后,才会触发。

总结

以上所示是小编给大家介绍的Java8中的Stream相关知识,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

(0)

相关推荐

  • 详解java8中的Stream数据流

    Stream是java8引入的一个重度使用lambda表达式的API.Stream使用一种类似用SQL语句从数据库查询数据的直观方式来提供一种对Java集合运算和表达的高阶抽象.直观意味着开发者在写代码时只需关注他们想要的结果是什么而无需关注实现结果的具体方式.这一章节中,我们将介绍为什么我们需要一种新的数据处理API.Collection和Stream的不同之处以及如何将StreamAPI应用到我们的编码中. 筛选重复的元素 Stream 接口支持 distinct 的方法, 它会返回一个元素

  • 初识Java8中的Stream

    lambda表达式是stream的基础,初学者建议先学习lambda表达式,http://www.jb51.net/article/121129.htm 1.初识stream 先来一个总纲: 东西就是这么多啦,stream是java8中加入的一个非常实用的功能,最初看时以为是io中的流(其实一点关系都没有),让我们先来看一个小例子感受一下: @Before public void init() { random = new Random(); stuList = new ArrayList<St

  • Java8 中使用Stream 让List 转 Map使用问题小结

    在使用 Java 的新特性 Collectors.toMap() 将 List 转换为 Map 时存在一些不容易发现的问题,这里总结一下备查. 空指针风险 java.lang.NullPointerException 当 List 中有 null 值的时候,使用 Collectors.toMap() 转为 Map 时,会报 java.lang.NullPointerException,如下: List<SdsTest> sdsTests = new ArrayList<>(); S

  • 总结一下关于在Java8中使用stream流踩过的一些坑

    Java8的stream流 第一个坑: Collectors.toAsList()其实是new了一个list,在向里面赋值. 注意这里Collectors.toList()的写法,这里其实是底层new ArraryList().筛选的数据放到一个新的list.虽然标1处和标2处是同一个变量,但是内存地址是不一样啊.下面的逻辑时把hldrPolVOList中的某些元素删除.但是这个方法执行完后其实是没有删除里面元素的.原因就是这里的new ArraryList()更改了内存地址造成的. 测试: 解

  • Java8中的Stream 流实践操作

    目录 1 前言 2 Stream 的分类 3 Stream 的操作 3.1 创建流的方式 3.2 流的中间操作 3.3 流的终止操作 总结 1 前言 Stream 是 java8 中处理集合的抽象概念,可以执行非常复杂的查询.过滤和映射数据等操作.Stream API 提供了一种高效的处理数据方式,Stream 对集合数据的操作可以说是非常的方便.Stream 是流,不是一种数据结构,也不会保存数据,只是一种数据处理方式,从一种数据组织结构到另外一种数据结构. 2 Stream 的分类 按照 S

  • Java8中的Stream流式操作教程之王者归来

    前言 相对于Java8之前的Java的相关操作简直是天差地别,Java8 的流式操作的出现,也很大程度上改变了开发者对于Java的繁琐的操作的印象,从此,Java也走向了函数式编程的道路! 1 流的创建 1.1 流的创建方法 既然需要聊聊流的操作,那么,首先还是先看看怎么创建流. 创建流的方法有三种,分别是:Stream.of().Stream.iterate().Stream.generate(),然后,分别看一下这三个方法的声明. static <T> Stream<T> of

  • Java8中利用stream对map集合进行过滤的方法

    前言 Stream 是用函数式编程方式在集合类上进行复杂操作的工具,其集成了Java 8中的众多新特性之一的聚合操作,开发者可以更容易地使用Lambda表达式,并且更方便地实现对集合的查找.遍历.过滤以及常见计算等. 最近公司在大张旗鼓的进行代码审核,从中也发现自己写代码的不好习惯.一次无意的点到了公司封装的对map集合过滤的方法,发现了stream.于是研究了一下.并对原有的代码再次结合Optional进行重构下 原有方法说明 主要处理过滤条件Map对象,过滤掉了null和空字符串 等操作 这

  • Java8中Stream的使用方式

    目录 前言: 1. 为什么有经验的老手更倾向于使用Stream 2. Stream 的使用方式 3. Stream 的创建 4. Stream 中间操作 5. Stream 终止操作 6. Stream 特性 前言: 相信有很多刚刚入坑程序员的小伙伴被一些代码搞的很头疼,这些代码让我们既感觉到很熟悉,又很陌生的感觉.我们很多刚入行的朋友更习惯于使用for循环或是迭代器去解决一些遍历的问题,但公司里很多老油子喜欢使用Java8新特性Stream流去做,这样可以用更短的代码实现需求,但是对于不熟悉的

  • java8中Stream的使用示例教程

    前言 Java8中提供了Stream对集合操作作出了极大的简化,学习了Stream之后,我们以后不用使用for循环就能对集合作出很好的操作. 本文将给大家详细介绍关于java8 Stream使用的相关内容,下面话不多说了,来一起看看详细的介绍吧 1. 原理 Stream 不是集合元素,它不是数据结构并不保存数据,它是有关算法和计算的,它更像一个高级版本的 Iterator. 原始版本的 Iterator,用户只能显式地一个一个遍历元素并对其执行某些操作: 高级版本的 Stream,用户只要给出需

  • java8中Stream的使用以及分割list案例

    一.Steam的优势 java8中Stream配合Lambda表达式极大提高了编程效率,代码简洁易懂(可能刚接触的人会觉得晦涩难懂),不需要写传统的多线程代码就能写出高性能的并发程序 二.项目中遇到的问题 由于微信接口限制,每次导入code只能100个,所以需要分割list.但是由于code数量可能很大,这样执行效率就会很低. 1.首先想到是用多线程写传统并行程序,但是博主不是很熟练,写出代码可能会出现不可预料的结果,容易出错也难以维护. 2.然后就想到Steam中的parallel,能提高性能

随机推荐