python使用writerows写csv文件产生多余空行的处理方法

初次接触python,学艺不精,第一次实战写一个文本处理的小程序时便遇到了头疼的问题。

先看代码:

生成的.CSV文件每两行之间都会多出一行空格(如下图),具体原因可参看点击打开链接

 with open('E:\\test.csv','wt')as fout:
    cout=csv.DictWriter(fout,list_attrs_head )#list_attrs_head头属性列表
    cout.writeheader()
    cout.writerows(list_words)

上面链接中的这位大神原因和方法都写得比较好,开始我是按照链接中的方法修改,

将with open(path,'wt')as fout改为with open(path,'wb')as fout

但一运行却报出这样的错误:TypeError: a bytes-like object is required, not 'str'   ,是因为我写入的都是字符串,所以会报错,按要求改成字节可能会成功,没有再试

最后想到了一个比较简单原始的方法,就是再将生成好的.csv文件以文本方式读出,并判断是否是空行,若是空行就直接舍弃即可。

输出没有空行的.csv文件完整代码为:

  with open('E:\\test.csv','wt')as fout:    #生成csv文件,有空行
    cout=csv.DictWriter(fout,list_attrs_head )
    cout.writeheader()
    cout.writerows(list_words)
  with open('E:\\test.csv','rt')as fin: #读有空行的csv文件,舍弃空行
    lines=''
    for line in fin:
      if line!='\n':
        lines+=line
  with open('E:\\test.csv','wt')as fout: #再次文本方式写入,不含空行
    fout.write(lines)

运行一下,结果如下:

总结

以上所述是小编给大家介绍的python使用writerows写csv文件产生多余空行的处理方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • Python把csv数据写入list和字典类型的变量脚本方法

    如下所示: #coding=utf8 import csv import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s', datefmt='%a, %d %b %Y %H:%M:%S', filename='readDate.log', filemode='w') ''' 该模块的主要功能,是

  • python读取与写入csv格式文件的示例代码

    在数据分析中经常需要从csv格式的文件中存取数据以及将数据写书到csv文件中.将csv文件中的数据直接读取为 dict 类型和 DataFrame 是非常方便也很省事的一种做法,以下代码以鸢尾花数据为例. csv文件读取为dict 代码 # -*- coding: utf-8 -*- import csv with open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldna

  • Python读csv文件去掉一列后再写入新的文件实例

    用了两种方式解决该问题,都是网上现有的解决方案. 场景说明: 有一个数据文件,以文本方式保存,现在有三列user_id,plan_id,mobile_id.目标是得到新文件只有mobile_id,plan_id. 解决方案 方案一:用python的打开文件写文件的方式直接撸一遍数据,for循环内处理数据并写入到新文件. 代码如下: def readwrite1( input_file,output_file): f = open(input_file, 'r') out = open(outpu

  • python中csv文件的若干读写方法小结

    如下所示: //用普通文本文件方式打开和操作 with open("'file.csv'") as cf: lines=cf.readlines() ...... //用普通文本方式打开,用csv模块操作 import csv with open("file.csv") as cf: lines=csv.reader(cf) for line in lines: print(line) ...... import csv headers=['id','usernam

  • Python实现读取及写入csv文件的方法示例

    本文实例讲述了Python实现读取及写入csv文件的方法.分享给大家供大家参考,具体如下: 新建csvData.csv文件,数据如下: 具体代码如下: # coding:utf-8 import csv # 读取csv文件方式1 csvFile = open("csvData.csv", "r") reader = csv.reader(csvFile) # 返回的是迭代类型 data = [] for item in reader: print(item) dat

  • 利用Python如何将数据写到CSV文件中

    前言 我们从网上爬取数据,最后一步会考虑如何存储数据.如果数据量不大,往往不会选择存储到数据库,而是选择存储到文件中,例如文本文件.CSV 文件.xls 文件等.因为文件具备携带方便.查阅直观. Python 作为胶水语言,搞定这些当然不在话下.但在写数据过程中,经常因数据源中带有中文汉字而报错.最让人头皮发麻的编码问题. 我先说下编码相关的知识.编码方式有很多种:UTF-8, GBK, ASCII 等. ASCII 码是美国在上个世纪 60 年代制定的一套字符编码.主要是规范英语字符和二进制位

  • Python基于csv模块实现读取与写入csv数据的方法

    本文实例讲述了Python基于csv模块实现读取与写入csv数据的方法.分享给大家供大家参考,具体如下: 通过csv模块可以轻松读取格式为csv的文件,而且csv模块是python内置的,不需要下载就可以直接用. 一.准备csv文件 文件名是 e:\t.csv,文件内容: org_id,org_name,state,emp_id 1,销售1,'1',123 2,销售2,'0',321 3,销售3,'1',231 1,,'1',1234 二.读取csv数据 代码非常简单: # -*- coding

  • python对csv文件追加写入列的方法

    python对csv文件追加写入列,具体内容如下所示: 原始数据 [外链图片转存失败(img-zQSQWAyQ-1563597916666)(C:\Users\innduce\AppData\Roaming\Typora\typora-user-images\1557663419920.png)] import pandas as pd import numpy as np data = pd.read_csv(r'平均值.csv') print(data.columns)#获取列索引值 dat

  • python使用writerows写csv文件产生多余空行的处理方法

    初次接触python,学艺不精,第一次实战写一个文本处理的小程序时便遇到了头疼的问题. 先看代码: 生成的.CSV文件每两行之间都会多出一行空格(如下图),具体原因可参看点击打开链接 with open('E:\\test.csv','wt')as fout: cout=csv.DictWriter(fout,list_attrs_head )#list_attrs_head头属性列表 cout.writeheader() cout.writerows(list_words) 上面链接中的这位大

  • python 读取目录下csv文件并绘制曲线v111的方法

    实例如下: # -*- coding: utf-8 -*- """ Spyder Editor This temporary script file is located here: C:\Users\user\.spyder2\.temp.py """ """ Show how to modify the coordinate formatter to report the image "z"

  • 分享python 写 csv 文件的两种方法

    目录 问题描述 方法一: csv 方法二: pandas 问题描述 在深度学习相关任务的训练时,需要在训练的每个 epoch 记录当前 epoch 的准确率(如下图所示),那么在 python 中要怎么将内容写入 csv 文件呢,学习发现可以使用 csv 或者 pandas 实现,在这里做个简单记录. 这里示例的代码为以追加模式写,每次写入一行 方法一: csv import csv log_path = 'log/temp.csv' file = open(log_path, 'a+', en

  • python读写数据读写csv文件(pandas用法)

    python中数据处理是比较方便的,经常用的就是读写文件,提取数据等,本博客主要介绍其中的一些用法.Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能. 一.pandas读取csv文件 数据处理过程中csv文件用的比较多. import pandas as pd data = pd.read_csv('F:/Zhu/test/test.csv') 下面看一下pd.read_csv常用的参数: panda

  • python基础教程之csv文件的写入与读取

    目录 csv的简单介绍 csv的写入 第一种写入方法(通过创建writer对象) 第二种写入方法(使用DictWriter可以使用字典的方式将数据写入) csv的读取 通过reader()读取 通过dictreader()读取 总结 csv的简单介绍 CSV (Comma Separated Values),即逗号分隔值(也称字符分隔值,因为分隔符可以不是逗号),是一种常用的文本格式,用以存储表格数据,包括数字或者字符.很多程序在处理数据时都会碰到csv这种格式的文件.python自带了csv模

  • python 对多个csv文件分别进行处理的方法

    如下所示: import glob import time import csv csvx_list = glob.glob('*.csv') #打开文件夹下全部的CSV文件 print('总共发现%s个CSV文件'% len(csvx_list)) time.sleep(2) print('正在处理............') for i in csvx_list: #i既是正在处理的文件名 csvfile = open(i, encoding='utf-8') csvreader = csv

  • Python详解复杂CSV文件处理方法

    目录 项目简介 项目笔记与心得 1.分批处理与多进程及多线程加速 2.优化算法提高效率 总结 项目简介 鉴于项目保密的需要,不便透露太多项目的信息,因此,简单介绍一下项目存在的难点: 海量数据:项目是对CSV文件中的数据进行处理,而特点是数据量大...真的大!!!拿到的第一个CSV示例文件是110多万行(小CASE),而第二个文件就到了4500万行,等到第三个文件......好吧,一直没见到第三个完整示例文件,因为太大了,据说是第二个示例文件的40多倍,大概二十亿行...... 业务逻辑复杂:项

  • python 使用pandas读取csv文件的方法

    目录 pandas读取csv文件的操作 1. 读取csv文件 在这里记录一下,python使用pandas读取文件的方法用到pandas库的read_csv函数 # -*- coding: utf-8 -*- """ Created on Mon Jan 24 16:48:32 2022 @author: zxy """ # 导入包 import numpy as np import pandas as pd import matplotlib.

  • 对Python 多线程统计所有csv文件的行数方法详解

    如下所示: #统计某文件夹下的所有csv文件的行数(多线程) import threading import csv import os class MyThreadLine(threading.Thread): #用于统计csv文件的行数的线程类 def __init__(self,path): threading.Thread.__init__(self) #父类初始化 self.path=path #路径 self.line=-1 #统计行数 def run(self): reader =

  • 解决Python中pandas读取*.csv文件出现编码问题

    1.问题 在使用Python中pandas读取csv文件时,由于文件编码格式出现以下问题: Traceback (most recent call last): File "pandas\_libs\parsers.pyx", line 1134, in pandas._libs.parsers.TextReader._convert_tokens File "pandas\_libs\parsers.pyx", line 1240, in pandas._libs

随机推荐