Python实现爬取亚马逊数据并打印出Excel文件操作示例

本文实例讲述了Python实现爬取亚马逊数据并打印出Excel文件操作。分享给大家供大家参考,具体如下:

python大神们别喷,代码写的很粗糙,主要是完成功能,能够借鉴就看下吧,我是学java的,毕竟不是学python的,自己自学看了一点点python,望谅解。

#!/usr/bin/env python3
# encoding=UTF-8
import sys
import re
import urllib.request
import json
import time
import zlib
from html import unescape
import threading
import os
import xlwt
import math
import requests
#例如这里设置递归为一百万
sys.setrecursionlimit(1000000000)
##获取所有列别
def getProUrl():
  urlList = []
  headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"}
  session = requests.Session()
  furl="https://www.amazon.cn/?tag=baidu250-23&hvadid={creative}&ref=pz_ic_22fvxh4dwf_e&page="
  for i in range(0,1):
    html=""
    html = session.post(furl+str(i),headers = headers)
    html.encoding = 'utf-8'
    s=html.text.encode('gb2312','ignore').decode('gb2312')
    url=r'</li><li id=".*?" data-asin="(.+?)" class="s-result-item celwidget">'
    reg=re.compile(url,re.M)
    name='"category" : "' + '(.*?)' + '"'
    reg1=re.compile(name,re.S)
    urlList = reg1.findall(html.text)
    return urlList
##根据类别获取数据链接
def getUrlData(ci):
   url="https://www.amazon.cn/s/ref=nb_sb_noss_2?__mk_zh_CN=%E4%BA%9A%E9%A9%AC%E9%80%8A%E7%BD%91%E7%AB%99&url=search-alias%3Daps&field-keywords="+ci+"&page=1&sort=review-rank"
   return url
##定时任务,等待1秒在进行
def fun_timer():
  time.sleep(3)
##根据链接进行查询每个类别的网页内容
def getProData(allUrlList):
  webContentHtmlList = []
  headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"}
  for ci in allUrlList:
    session = requests.Session()
    fun_timer()
    html = session.get(getUrlData(ci),headers = headers)
    # 设置编码
    html.encoding = 'utf-8'
    html.text.encode('gb2312', 'ignore').decode('gb2312')
    gxg = r'</li><li id=".*?" data-asin="(.+?)" class="s-result-item celwidget">'
    reg = re.compile(gxg, re.M)
    items = reg.findall(html.text)
    print(html.text)
    webContentHtmlList.append(html.text)
  return webContentHtmlList
##根据网页内容过滤需要的属性和值
def getProValue():
  list1 = [] * 5
  list2 = [] * 5
  list3 = [] * 5
  list4 = [] * 5
  list5 = [] * 5
  list6 = [] * 5
  list7 = [] * 5
  list8 = [] * 5
  urlList = getProUrl();
  urlList.remove('全部分类')
  urlList.remove('Prime会员优先购')
  index = 0
  for head in urlList:
    if index >= 0 and index < 5:
      list1.append(head)
      index = index + 1
    if index >= 5 and index < 10:
      list2.append(head)
      index = index + 1
    if index >= 10 and index < 15:
      list3.append(head)
      index = index + 1
    if index >= 15 and index < 20:
      list4.append(head)
      index = index + 1
    if index >= 20 and index < 25:
      list5.append(head)
      index = index + 1
    if index >= 25 and index < 30:
      list6.append(head)
      index = index + 1
    if index >= 30 and index < 35:
      list7.append(head)
      index = index + 1
    if index >= 35 and index < 40:
      list8.append(head)
      index = index + 1
  webContentHtmlList1 = []
  webContentHtmlList1 = getProData(list1)
  webContentHtmlList2 = []
  webContentHtmlList2 = getProData(list2)
  webContentHtmlList3 = []
  webContentHtmlList3 = getProData(list3)
  webContentHtmlList4 = []
  webContentHtmlList4 = getProData(list4)
  webContentHtmlList5 = []
  webContentHtmlList5 = getProData(list5)
  webContentHtmlList6 = []
  webContentHtmlList6 = getProData(list6)
  webContentHtmlList7 = []
  webContentHtmlList7 = getProData(list7)
  webContentHtmlList8 = []
  webContentHtmlList8 = getProData(list8)
  ##存储所有数据的集合
  dataTwoAllList1 = []
  print("开始检索数据,检索数据中..........")
  ##网页内容1
  for html in webContentHtmlList1:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容2
  for html in webContentHtmlList2:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容3
  for html in webContentHtmlList3:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容4
  for html in webContentHtmlList4:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容5
  for html in webContentHtmlList5:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容6
  for html in webContentHtmlList6:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容7
  for html in webContentHtmlList7:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容8
  for html in webContentHtmlList8:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  print("检索数据完成!!!!")
  print("开始保存并打印Excel文档数据!!!!")
  ##保存文档
  createTable(time.strftime("%Y%m%d") + '亚马逊销量数据统计.xls', dataTwoAllList1)
##抽取类别
def getProCategory(html,i):
    i = 0;
    name = '<span class="a-color-state a-text-bold">' + '(.*?)' + '</span>'
    reg=re.compile(name,re.S)
    items = reg.findall(html)
    if len(items)==0:
      return ""
    else:
      if i<len(items):
        return items[i]
      else:
        return ""
##抽取标题
def getProTitle(html,i):
  html = getHtmlById(html,i)
  name = '<a class="a-link-normal s-access-detail-page s-color-twister-title-link a-text-normal" target="_blank" title="' + '(.*?)' + '"'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return ""
  else:
    return items[0]
##抽取价格<a class="a-link-normal s-access-detail-page s-color-twister-title-link a-text-normal" target="_blank" title="
def getProPrice(html,i):
  html = getHtmlById(html,i)
  name = '<span class="a-size-base a-color-price s-price a-text-bold">' + '(.*?)' + '</span>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "¥0"
  else:
    return items[0]
##抽取卖家统计
def getSellerCount(html,i):
  html = getHtmlById(html,i)
  name = '<span class="a-color-secondary">' + '(.*?)' + '</span>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "(0 卖家)"
  else:
    return checkSellerCount(items,0)
##检查卖家统计
def checkSellerCount(items,i):
  result = items[i].find('卖家') >= 0
  if result:
    if len(items[i])<=9:
      return items[i]
    else:
      return '(0 卖家)'
  else:
    if i + 1 < len(items):
      i = i + 1
      result = items[i].find('卖家') >= 0
      if result:
        if len(items[i]) <= 9:
          return items[i]
        else:
          return '(0 卖家)'
        if i + 1 < len(items[i]):
          i = i + 1
          result = items[i].find('卖家') >= 0
          if result:
            if len(items[i]) <= 9:
              return items[i]
            else:
              return '(0 卖家)'
          else:
            return '(0 卖家)'
        else:
          return '(0 卖家)'
      else:
        return '(0 卖家)'
    else:
      return '(0 卖家)'
    return '(0 卖家)'
##抽取星级 <span class="a-icon-alt">
def getProStar(html,i):
  html = getHtmlById(html,i)
  name = '<span class="a-icon-alt">' + '(.*?)' + '</span>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "平均 0 星"
  else:
    return checkProStar(items,0)
##检查星级
def checkProStar(items,i):
  result = items[i].find('星') >= 0
  if result:
      return items[i]
  else:
    if i + 1 < len(items):
      i = i + 1
      result = items[i].find('星') >= 0
      if result:
        return items[i]
      else:
        return '平均 0 星'
    else:
      return '平均 0 星'
    return '平均 0 星'
##抽取商品评论数量 销量
##<a class="a-size-small a-link-normal a-text-normal" target="_blank" href="https://www.amazon.cn/dp/B073LBRNV2/ref=sr_1_1?ie=UTF8&qid=1521782688&sr=8-1&keywords=%E5%9B%BE%E4%B9%A6#customerReviews" rel="external nofollow" >56</a>
def getProCommentCount(html,i):
  name = '<a class="a-size-small a-link-normal a-text-normal" target="_blank" href=".*?#customerReviews" rel="external nofollow" ' + '(.*?)' + '</a>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "0"
  else:
    if i<len(items):
      return items[i].strip(">")
    else:
      return "0"
##根据id取出html里面的内容
def get_id_tag(content, id_name):
 id_name = id_name.strip()
 patt_id_tag = """<[^>]*id=['"]?""" + id_name + """['" ][^>]*>"""
 id_tag = re.findall(patt_id_tag, content, re.DOTALL|re.IGNORECASE)
 if id_tag:
   id_tag = id_tag[0]
 else:
   id_tag=""
 return id_tag
##缩小范围 定位值
def getHtmlById(html,i):
    start = get_id_tag(html,"result_"+str(i))
    i=i+1
    end = get_id_tag(html, "result_" + str(i))
    name = start + '.*?'+end
    reg = re.compile(name, re.S)
    html = html.strip()
    items = reg.findall(html)
    if len(items) == 0:
      return ""
    else:
      return items[0]
##生成word文档
def createTable(tableName,dataTwoAllList):
  flag = 1
  results = []
  results.append("类别,标题,价格,卖家统计,星级,评论数")
  columnName = results[0].split(',')
  # 创建一个excel工作簿,编码utf-8,表格中支持中文
  wb = xlwt.Workbook(encoding='utf-8')
  # 创建一个sheet
  sheet = wb.add_sheet('sheet 1')
  # 获取行数
  rows = math.ceil(len(dataTwoAllList))
  # 获取列数
  columns = len(columnName)
  # 创建格式style
  style = xlwt.XFStyle()
  # 创建font,设置字体
  font = xlwt.Font()
  # 字体格式
  font.name = 'Times New Roman'
  # 将字体font,应用到格式style
  style.font = font
  # 创建alignment,居中
  alignment = xlwt.Alignment()
  # 居中
  alignment.horz = xlwt.Alignment.HORZ_CENTER
  # 应用到格式style
  style.alignment = alignment
  style1 = xlwt.XFStyle()
  font1 = xlwt.Font()
  font1.name = 'Times New Roman'
  # 字体颜色(绿色)
  # font1.colour_index = 3
  # 字体加粗
  font1.bold = True
  style1.font = font1
  style1.alignment = alignment
  for i in range(columns):
    # 设置列的宽度
    sheet.col(i).width = 5000
  # 插入列名
  for i in range(columns):
    sheet.write(0, i, columnName[i], style1)
  for i in range(1,rows):
    for j in range(0,columns):
      sheet.write(i, j, dataTwoAllList[i-1][j], style)
    wb.save(tableName)
##入口开始
input("按回车键开始导出..........")
fun_timer()
print("三秒后开始抓取数据.......,请等待!")
getProValue();
print("数据导出成功!请注意查看!")
print("数据文档《亚马逊销量数据统计.xls》已经存于C盘下面的C:\Windows\SysWOW64的该路径下面!!!!")
input()

结果数据:

打包成exe文件,直接可以点击运行:打包过程我就不一一说了,都是一些命令操作:

要安装pyinstaller,打成exe的操作命令:--inco是图标,路径和项目当前路径一样

途中遇到很多问题,都一一解决了,乱码,ip限制,打包后引入模块找不到,递归最大次数,过滤的一些问题

pyinstaller -F -c --icon=my.ico crawling.py    这是打包命令

效果图:

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python爬取网易云音乐热门评论

    最近在研究文本挖掘相关的内容,所谓巧妇难为无米之炊,要想进行文本分析,首先得到有文本吧.获取文本的方式有很多,比如从网上下载现成的文本文档,或者通过第三方提供的API进行获取数据.但是有的时候我们想要的数据并不能直接获取,因为并不提供直接的下载渠道或者API供我们获取数据.那么这个时候该怎么办呢?有一种比较好的办法是通过网络爬虫,即编写计算机程序伪装成用户去获得想要的数据.利用计算机的高效,我们可以轻松快速地获取数据. 那么该如何写一个爬虫呢?有很多种语言都可以写爬虫,比如Java,php,py

  • python制作爬虫爬取京东商品评论教程

    本篇文章是python爬虫系列的第三篇,介绍如何抓取京东商城商品评论信息,并对这些评论信息进行分析和可视化.下面是要抓取的商品信息,一款女士文胸.这个商品共有红色,黑色和肤色三种颜色, 70B到90D共18个尺寸,以及超过700条的购买评论. 京东商品评论信息是由JS动态加载的,所以直接抓取商品详情页的URL并不能获得商品评论的信息.因此我们需要先找到存放商品评论信息的文件.这里我们使用Chrome浏览器里的开发者工具进行查找. 具体方法是在商品详情页点击鼠标右键,选择检查,在弹出的开发者工具界

  • Python爬取当当、京东、亚马逊图书信息代码实例

    注:1.本程序采用MSSQLserver数据库存储,请运行程序前手动修改程序开头处的数据库链接信息 2.需要bs4.requests.pymssql库支持 3.支持多线程 from bs4 import BeautifulSoup import re,requests,pymysql,threading,os,traceback try: conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='root',

  • Python爬虫:通过关键字爬取百度图片

    使用工具:Python2.7 点我下载 scrapy框架 sublime text3 一.搭建python(Windows版本)  1.安装python2.7 ---然后在cmd当中输入python,界面如下则安装成功  2.集成Scrapy框架----输入命令行:pip install Scrapy 安装成功界面如下: 失败的情况很多,举例一种: 解决方案: 其余错误可百度搜索. 二.开始编程. 1.爬取无反爬虫措施的静态网站.例如百度贴吧,豆瓣读书. 例如-<桌面吧>的一个帖子https:

  • Python爬取网页中的图片(搜狗图片)详解

    前言 最近几天,研究了一下一直很好奇的爬虫算法.这里写一下最近几天的点点心得.下面进入正文: 你可能需要的工作环境: Python 3.6官网下载 本地下载 我们这里以sogou作为爬取的对象. 首先我们进入搜狗图片http://pic.sogou.com/,进入壁纸分类(当然只是个例子Q_Q),因为如果需要爬取某网站资料,那么就要初步的了解它- 进去后就是这个啦,然后F12进入开发人员选项,笔者用的是Chrome. 右键图片>>检查 发现我们需要的图片src是在img标签下的,于是先试着用

  • python爬虫实战之爬取京东商城实例教程

    前言 本文主要介绍的是利用python爬取京东商城的方法,文中介绍的非常详细,下面话不多说了,来看看详细的介绍吧. 主要工具 scrapy BeautifulSoup requests 分析步骤 1.打开京东首页,输入裤子将会看到页面跳转到了这里,这就是我们要分析的起点 2.我们可以看到这个页面并不是完全的,当我们往下拉的时候将会看到图片在不停的加载,这就是ajax,但是当我们下拉到底的时候就会看到整个页面加载了60条裤子的信息,我们打开chrome的调试工具,查找页面元素时可以看到每条裤子的信

  • Python实现爬取知乎神回复简单爬虫代码分享

    看知乎的时候发现了一个 "如何正确地吐槽" 收藏夹,里面的一些神回复实在很搞笑,但是一页一页地看又有点麻烦,而且每次都要打开网页,于是想如果全部爬下来到一个文件里面,是不是看起来很爽,并且随时可以看到全部的,于是就开始动手了. 工具 1.Python 2.7 2.BeautifulSoup 分析网页 我们先来看看知乎上该网页的情况 网址:,容易看到,网址是有规律的,page慢慢递增,这样就能够实现全部爬取了. 再来看一下我们要爬取的内容: 我们要爬取两个内容:问题和回答,回答仅限于显示

  • python爬取亚马逊书籍信息代码分享

    我有个需求就是抓取一些简单的书籍信息存储到mysql数据库,例如,封面图片,书名,类型,作者,简历,出版社,语种. 我比较之后,决定在亚马逊来实现我的需求. 我分析网站后发现,亚马逊有个高级搜索的功能,我就通过该搜索结果来获取书籍的详情URL. 由于亚马逊的高级搜索是用get方法的,所以通过分析,搜索结果的URL,可得到node参数是代表书籍类型的.field-binding_browse-bin是代表书籍装饰. 所以我固定了书籍装饰为平装,而书籍的类型,只能每次运行的时候,爬取一种类型的书籍难

  • python实现爬取千万淘宝商品的方法

    本文实例讲述了python实现爬取千万淘宝商品的方法.分享给大家供大家参考.具体实现方法如下: import time import leveldb from urllib.parse import quote_plus import re import json import itertools import sys import requests from queue import Queue from threading import Thread URL_BASE = 'http://s

  • python爬虫_微信公众号推送信息爬取的实例

    问题描述 利用搜狗的微信搜索抓取指定公众号的最新一条推送,并保存相应的网页至本地. 注意点 搜狗微信获取的地址为临时链接,具有时效性. 公众号为动态网页(JavaScript渲染),使用requests.get()获取的内容是不含推送消息的,这里使用selenium+PhantomJS处理 代码 #! /usr/bin/env python3 from selenium import webdriver from datetime import datetime import bs4, requ

随机推荐