在Pandas中处理NaN值的方法

关于NaN值

-在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据, 也就是说,我们需要通过某个方法检测并更正数据中的错误。
- 任何给定数据集可能会出现各种糟糕的数据,例如离群值或不正确的值,但是我们几乎始终会遇到的糟糕数据类型是缺少值。
- Pandas 会为缺少的值分配 NaN 值。

创建一个具有NaN值得 Data Frame

import pandas as pd

# We create a list of Python dictionaries
# 创建一个字典列表
items2 = [{'bikes': 20, 'pants': 30, 'watches': 35, 'shirts': 15, 'shoes':8, 'suits':45},
{'watches': 10, 'glasses': 50, 'bikes': 15, 'pants':5, 'shirts': 2, 'shoes':5, 'suits':7},
{'bikes': 20, 'pants': 30, 'watches': 35, 'glasses': 4, 'shoes':10}]

# 创建一个DataFrame并设置行索引
store_items = pd.DataFrame(items2, index = ['store 1', 'store 2', 'store 3'])

# 显示
store_items

显示:

数据量大时统计NaN的个数

# 计算在store_items中NaN值的个数
x = store_items.isnull().sum().sum()

# 输出
print('在我们DataFrame中NaN的数量:', x)

输出:

在我们DataFrame中NaN的数量: 3

.isnull() 方法返回一个大小和 store_items 一样的布尔型 DataFrame,并用 True 表示具有 NaN 值的元素,用 False 表示非 NaN 值的元素。

store_items.isnull()

显示:

在 Pandas 中,逻辑值 True 的数字值是 1,逻辑值 False 的数字值是 0。

因此,我们可以通过数逻辑值 True 的数量数出 NaN 值的数量。

为了数逻辑值 True 的总数,我们使用 .sum() 方法两次。

要使用该方法两次,是因为第一个 sum() 返回一个 Pandas Series,其中存储了列上的逻辑值 True 的总数

第二个 sum() 将上述 Pandas Series 中的 1 相加

除了数 NaN 值的数量之外,我们还可以采用相反的方式,我们可以数非 NaN 值的数量。为此,我们可以使用 .count() 方法

print('在我们DataFrame的列中具有非NaN值得数量分别为:\n', store_items.count())

输出:

在我们DataFrame的列中具有非NaN值得数量:
bikes 3
glasses 2
pants 3
shirts 2
shoes 3
suits 2
watches 3
dtype: int64

处理这些 NaN 值

  • 如果 axis = 0,.dropna(axis) 方法将删除包含 NaN 值的任何行
  • 如果 axis = 1,.dropna(axis) 方法将删除包含 NaN 值的任何列
# 删除包含NaN值得任何行
store_items.dropna(axis = 0)

显示为:

store_items.dropna(axis = 1)

显示为:

注意:

- .dropna() 方法不在原地地删除具有 NaN 值的行或列。
- 原始 DataFrame 不会改变。你始终可以在 dropna() 方法中将关键字 inplace 设为 True,在原地删除目标行或列。

将NaN值替换为合适的值

我们不再删除 NaN 值,而是将它们替换为合适的值。例如,我们可以选择将所有 NaN 值替换为 0。为此,我们可以使用 .fillna() 方法

store_items.fillna(0)

显示:

我们还可以使用 .fillna() 方法将 NaN 值替换为 DataFrame 中的上个值,称之为前向填充

.fillna(method = 'ffill', axis) 将通过前向填充 (ffill) 方法沿着给定 axis 使用上个已知值替换 NaN 值

store_items.fillna(method = 'ffill', axis = 0)

显示:

注意 store 3 中的两个 NaN 值被替换成了它们所在列中的上个值。

但是注意, store 1 中的 NaN 值没有被替换掉。因为这列前面没有值,因为 NaN 值是该列的第一个值。

现在,使用上个行值进行前向填充

store_items.fillna(method = 'ffill', axis = 1)

显示:

在这种情况下:所有 NaN 值都被替换成了之前的行值

同时,也可以选择用 DataFrame 中之后的值替换 NaN 值,称之为后向填充

# 向后填充列,即为NaN的列值,用其列中的后一个来填充
store_items.fillna(method = 'backfill', axis = 0)

同理:也可以向后填充行,即为NaN的行值,用其行中的后一个来填充

# 向后填充行,即为NaN的行值,用其行中的后一个来填充
store_items.fillna(method = 'backfill', axis = 1)

注意:.fillna() 方法不在原地地替换(填充)NaN 值。也就是说,原始 DataFrame 不会改变。你始终可以在 fillna() 函数中将关键字 inplace 设为 True,在原地替换 NaN 值。

还可以选择使用不同的插值方法替换 NaN 值

.interpolate(method = 'linear', axis) 方法将通过 linear 插值使用沿着给定 axis 的值替换 NaN 值, 这个差值也就是前后或者上下的中间值

store_items.interpolate(method = 'linear', axis = 0)

同时,也可用行值插入

store_items.interpolate(method = 'linear', axis = 1)

和我们看到的其他方法一样,.interpolate() 方法不在原地地替换 NaN 值,图片就省略了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python pandas消除空值和空格以及 Nan数据替换方法

    在人工采集数据时,经常有可能把空值和空格混在一起,一般也注意不到在本来为空的单元格里加入了空格.这就给做数据处理的人带来了麻烦,因为空值和空格都是代表的无数据,而pandas中Series的方法notnull()会把有空格的数据也纳入进来,这样就不能完整地得到我们想要的数据了,这里给出一个简单的方法处理该问题. 方法1: 既然我们认为空值和空格都代表无数据,那么可以先得到这两种情况下的布尔数组. 这里,我们的DataFrame类型的数据集为df,其中有一个变量VIN,那么取得空值和空格的布尔数组

  • 对pandas数据判断是否为NaN值的方法详解

    实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分. 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割. def age_map(x): if x < 26: return 0 elif x >=26 and x <= 35: return 1 elif x > 35 and x <= 45: return 2 elif pd.isnull(x): #判断是否为NaN值,== 和in 都无法判断

  • 在Pandas中处理NaN值的方法

    关于NaN值 -在能够使用大型数据集训练学习算法之前,我们通常需要先清理数据, 也就是说,我们需要通过某个方法检测并更正数据中的错误. - 任何给定数据集可能会出现各种糟糕的数据,例如离群值或不正确的值,但是我们几乎始终会遇到的糟糕数据类型是缺少值. - Pandas 会为缺少的值分配 NaN 值. 创建一个具有NaN值得 Data Frame import pandas as pd # We create a list of Python dictionaries # 创建一个字典列表 ite

  • 在JavaScript中使用NaN值的方法

    不带引号的字面常量NaN是一个特殊的值,表示不是非数字.由于NaN总是比较不等的情况,以任何数,包括NaN,它通常是用于指示应该返回一个有效的数的函数的错误条件. 注意:使用isNaN()全局函数来查看是否值是NaN值. 语法 您可以使用以下语法访问属性: var val = Number.NaN; 示例 : 在这里,dayOfMonth分配NaN,如果是大于31,并显示一条消息,表明有效范围: <html> <head> <script type="text/ja

  • Pandas替换NaN值的方法实现

    目录 问题 方法 替换 NaN 值的步骤 参考 替换Pandas DataFram中的 NaN 值 问题 NaN 代表 Not A Number,是表示数据中缺失值的常用方法之一.它是一个特殊的浮点值,不能转换为 float 以外的任何其他类型.NaN 值是数据分析中的主要问题之一.为了得到理想的结果,对 NaN 进行处理是非常必要的. 方法 用零替换Pandas DataFram中的 NaN 值的方法: fillna(): 用于使用指定的方法填充 NA/NaN 值. replace(): da

  • 在Python中给Nan值更改为0的方法

    如下所示: import pandas as pd df1 = pd.DataFrame([{'col1':'a', 'col2':1}, {'col1':'b', 'col2':2}]) df2 = pd.DataFrame([{'col1':'a', 'col3':11}, {'col1':'c', 'col3':33}]) data = pd.merge(left=df1, right=df2, how='left', left_on='col1', right_on='col1') pr

  • python设置值及NaN值处理方法

    如下所示: python 设置值 import pandas as pd import numpy as np dates = pd.date_range('20180101',periods=6) df = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=['A','B','C','D']) print(df) A B C D 2018-01-01 0 1 2 3 2018-01-02 4 5 6 7 2018-01-03

  • Python Pandas中缺失值NaN的判断,删除及替换

    目录 前言 1. 检查缺失值NaN 2. Pandas中NaN的类型 3. NaN的删除 dropna() 3.1 删除所有值均缺失的行/列 3.2 删除至少包含一个缺失值的行/列 3.3 根据不缺少值的元素数量删除行/列 3.4 删除特定行/列中缺少值的列/行 4. 缺失值NaN的替换(填充) fillna() 4.1 用通用值统一替换 4.2 为每列替换不同的值 4.3 用每列的平均值,中位数,众数等替换 4.4 替换为上一个或下一个值 总结 前言 当使用pandas读取csv文件时,如果元

  • JS返回iframe中frameBorder属性值的方法

    本文实例讲述了JS返回iframe中frameBorder属性值的方法.分享给大家供大家参考.具体分析如下: frameborder 属性规定是否显示框架周围的边框. <!DOCTYPE html> <html> <body> <iframe id="myframe" src="/default.asp" frameborder="0"> <p>Your browser does not

  • JS使用ajax方法获取指定url的head信息中指定字段值的方法

    本文实例讲述了JS使用ajax方法获取指定url的head信息中指定字段值的方法.分享给大家供大家参考.具体分析如下: 下面的JS代码用来获取ajax_info.txt的head信息中的Last modified属性,最后修改时间 <!DOCTYPE html> <html> <head> <script> function loadXMLDoc(url) { var xmlhttp; if (window.XMLHttpRequest) {// code

  • datagrid和repeader控件中替换标识值的方法

    DataGrid控件中替换标识值的使用: <asp:DataGrid ID="dgList" runat="server" Width="100%" AutoGenerateColumns="False"> <Columns> <asp:BoundColumn DataField="COP_G_NO" HeaderText="物料号/成品货号"><

随机推荐