OpenCV模板匹配matchTemplate的实现

作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性

模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。
它是图像处理中最基本、最常用的匹配方法。
模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。

模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域[/code]

工作原理:在待检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。

代码实现:

import cv2 as cv
import numpy as np

def template_demo():
  tpl = cv.imread("./temp.png")
  target = cv.imread("./1.png")
  cv.imshow("template image",tpl)
  cv.imshow("target image",target)
  methods = [cv.TM_SQDIFF_NORMED,cv.TM_CCORR_NORMED,cv.TM_CCOEFF_NORMED]  #各种匹配算法
  th,tw = tpl.shape[:2]  #获取模板图像的高宽
  for md in methods:
    result = cv.matchTemplate(target,tpl,md)
    # result是我们各种算法下匹配后的图像
    # cv.imshow("%s"%md,result)
    #获取的是每种公式中计算出来的值,每个像素点都对应一个值
    min_val,max_val,min_loc,max_loc = cv.minMaxLoc(result)
    if md == cv.TM_SQDIFF_NORMED:
      tl = min_loc  #tl是左上角点
    else:
      tl = max_loc
    br = (tl[0]+tw,tl[1]+th)  #右下点
    cv.rectangle(target,tl,br,(0,0,255),2)  #画矩形
    cv.imshow("match-%s"%md,target)

src = cv.imread("./1.png") #读取图片
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE)  #创建GUI窗口,形式为自适应
cv.imshow("input image",src)  #通过名字将图像和窗口联系
template_demo()
cv.waitKey(0)  #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows() #销毁所有窗口

补充:

1.几种常见的模板匹配算法

①TM_SQDIFF是平方差匹配;TM_SQDIFF_NORMED是标准平方差匹配。利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大。

②TM_CCORR是相关性匹配;TM_CCORR_NORMED是标准相关性匹配。采用模板和图像间的乘法操作,数越大表示匹配程度较高, 0表示最坏的匹配效果。

③TM_CCOEFF是相关性系数匹配;TM_CCOEFF_NORMED是标准相关性系数匹配。将模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性(随机序列)。

总结:随着从简单的测量(平方差)到更复杂的测量(相关系数),我们可获得越来越准确的匹配(同时也意味着越来越大的计算代价)。

相关性是越接近1越大越好

平方差是越小越好
所以TM_SQDIFF在使用时和其他的是有所区别的

2.result = cv.matchTemplate(target,tpl,md)

opencv的目标匹配函数为matchTemplate,函数原型为:matchTemplate(image, templ, method[, result[, mask]]) -> result
image参数表示待搜索源图像,必须是8位整数或32位浮点。
templ参数表示模板图像,必须不大于源图像并具有相同的数据类型。
method参数表示计算匹配程度的方法。
result参数表示匹配结果图像,必须是单通道32位浮点。如果image的尺寸为W x H,templ的尺寸为w x h,则result的尺寸为(W-w+1)x(H-h+1)。

其中result是模板图像去匹配的区域位置图像[/code]

3.min_val,max_val,min_loc,max_loc = cv.minMaxLoc(result)

opencv的函数minMaxLoc:在给定的矩阵中寻找最大和最小值,并给出它们的位置。 该功能不适用于多通道阵列。 如果您需要在所有通道中查找最小或最大元素,要先将阵列重新解释为单通道。
函数minMaxLoc原型为:minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc
src参数表示输入单通道图像。
mask参数表示用于选择子数组的可选掩码。
minVal参数表示返回的最小值,如果不需要,则使用NULL。
maxVal参数表示返回的最大值,如果不需要,则使用NULL。
minLoc参数表示返回的最小位置的指针(在2D情况下); 如果不需要,则使用NULL。
maxLoc参数表示返回的最大位置的指针(在2D情况下); 如果不需要,则使用NULL。

结合每种匹配算法,我们看看获取的数值

result = cv.matchTemplate(target,tpl,md)
    #获取的是每种公式中计算出来的值,每个像素点都对应一个值
    min_val,max_val,min_loc,max_loc = cv.minMaxLoc(result)
    print("--------------%s--------------"%md)
    print("min_val",min_val)
    print("max_val",max_val)
    print("min_loc",min_loc)
    print("max_loc",max_loc)
    print("--------------%s--------------" % md)
--------------1--------------  #TM_SQDIFF_NORMED标准平方差匹配
min_val 0.0  #标准差是越小为0代表匹配上了
max_val 0.22279763221740723
min_loc (108, 248)
max_loc (3, 480)
--------------1--------------
--------------3--------------  #TM_CCORR_NORMED标准相关性匹配
min_val 0.9228140115737915
max_val 1.0  #相关性是越接近1代表匹配上了
min_loc (9, 378)
max_loc (108, 248)
--------------3--------------
--------------5--------------  #TM_CCOEFF_NORMED标准相关性系数匹配
min_val -0.10706906020641327
max_val 1.0  #相关性越接近1越好
min_loc (186, 248)
max_loc (108, 248)
--------------5--------------

查看min_loc和max_loc关系

cv.line(target,min_loc,max_loc,(0,255,255),2)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java+opencv3.2.0实现模板匹配

    模板匹配是一项在一幅图像中寻找与另一幅模板图像最匹配(相似)部分的技术. 函数:Imgproc.matchTemplate(Mat image, Mat templ, Mat result, int method) 参数说明: image:源图像 templ:模板图像 result:比较结果 method:匹配算法 匹配算法: TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. TM_CCORR 相关匹配法:该方法采用乘法操作:数值越大表明匹配

  • OpenCV 模板匹配

    最近小编实现一个微信小程序「跳一跳」的自动化. 主要涉及到了OpenCV的模板匹配和边缘检测技术,以及Android开发调试工具ADB. 如果放在一起说,感觉内容有些多. 所以,分三期来讲,也能多了解一些东西. 首先介绍模板匹配,然后边缘检测,最后结合ADB实现「跳一跳」自动化. 游戏虽然过时了,但是拿来练练手还是不错的. 编程就该是快乐的,哈哈. / 01 / 模板匹配 模板匹配,就是在整个图像区域里发现与给定子图像相匹配的小块区域. 这里需要一个模板图像(给定的子图像)和一个待检测的图像(原

  • OpenCV模板匹配matchTemplate的实现

    作用有局限性,必须在指定的环境下,才能匹配成功,是受到很多因素的影响,所以有一定的适应性 模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题. 它是图像处理中最基本.最常用的匹配方法. 模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效. 模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域[/code] 工作原理:在待检测图像上,从左到右,从上向下计算模板图像与重

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • opencv模板匹配相同位置去除重复的框

    使用opencv自带的模板匹配 1.目标匹配函数:cv2.matchTemplate() res=cv2.matchTemplate(image, templ, method, result=None, mask=None) image:待搜索图像 templ:模板图像 result:匹配结果 method:计算匹配程度的方法,主要有以下几种: CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配:最好的匹配值为0:匹配越差,匹配值越大. CV_TM_CCORR 相关匹配法:该方法

  • OpenCV半小时掌握基本操作之模板匹配

    目录 概述 模板匹配 案例一 案例二 [OpenCV]⚠️高手勿入! 半小时学会基本操作 ⚠️ 概述模板 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. (第 21 课) 模板匹配 模板匹配 (Template Matching) 和卷积的原理很像. 模板在原图像上从原点开始滑动, 计算模板与图片被模板覆盖的地方的差别程度. 格式: cv2.matchTemplate(image, templ, method, r

  • opencv C++模板匹配的简单实现

    目录 一简单实现 二函数及原理讲解 1matchTemplate()参数详解 2minMaxLoc()函数 一 简单实现 #include <opencv2/opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { Mat img = imread("52.jpg"); Mat templ = imread("templ.jpg")

  • OpenCV-Python模板匹配人眼的实例

    什么是模板匹配 模板匹配是指在当前图像A内寻找与图像B最相似的部分,可以理解找茬,但是这里是找出一样的信息. 一般我们将图像A称为输入图像,将图像B称为模板图像.模板匹配的原理就是将模板B图像在图像A上滑动遍历,找出与其匹配的部分. 模板匹配函数 在OpenCV中,它给我们提供了cv2.matchTemplate()函数来完成模板匹配.其函数的完整定义如下: def matchTemplate(image, templ, method, result=None, mask=None): imag

  • Python和OpenCV进行多尺度模板匹配实现

    目录 1. 效果图 2. 原理 3. 步骤 4. 源码 5. 参考 这篇博文将实现如何将标准模板匹配扩展到多尺度,从而使其更加健壮.使其可以处理模板和输入图像大小不同的匹配. 1. 效果图 模板匹配问题:对于模板和图像中不一致的情况,会发生错误检测. 如下图左侧模板小,右侧图像中大,虽然完全一致,只是大小不一样,却未被检测到. 优化:多尺度模板匹配,对于模板和图像中有平移和缩放的情况可以完美工作. 如下图: 多尺度模板匹配,gif 详细效果图: 2. 原理 使用cv2.matchTemplate

  • Python+Opencv实现图像匹配功能(模板匹配)

    本文实例为大家分享了Python+Opencv实现图像匹配功能的具体代码,供大家参考,具体内容如下 1.原理 简单来说,模板匹配就是拿一个模板(图片)在目标图片上依次滑动,每次计算模板与模板下方的子图的相似度,最后就计算出了非常多的相似度: 如果只是单个目标的匹配,那只需要取相似度最大值所在的位置就可以得出匹配位置: 如果要匹配多个目标,那就设定一个阈值,就是说,只要相似度大于比如0.8,就认为是要匹配的目标. 1.1 相似度度量指标 差值平方和匹配 CV_TM_SQDIFF 标准化差值平方和匹

  • python计算机视觉opencv图像金字塔轮廓及模板匹配

    目录 1.图像金字塔 ①高斯金字塔 ②拉普拉斯金字塔 2.图像轮廓 ①寻找轮廓 ②轮廓特征 ③轮廓绘制 3.模板匹配 ①模板匹配 ②匹配框线绘制 ③多对象匹配 4.直方图统计 ①直方图绘制 ②直方图统计 ③直方图的mask操作 ④直方图均衡化 5.傅里叶变换 1.图像金字塔 ①高斯金字塔 向下采样,数据会越来越少,减少的方式是:将偶数行和列删除 向上采样,数据会越来越多,将图像在每个方向上扩大为原来的两倍,新增的行和列用0来填充.使用先前同样的内核与放大后的图像卷积,获得近似值. 上采样之后,图

随机推荐