如何识别高级的验证码的技术总结第1/4页

一、验证码的基本知识

  1. 验证码的主要目的是强制人机交互来抵御机器自动化攻击的。

  2. 大部分的验证码设计者并不得要领,不了解图像处理,机器视觉,模式识别,人工智能的基本概念。

  3. 利用验证码,可以发财,当然要犯罪:比如招商银行密码只有6位,验证码形同虚设,计算机很快就能破解一个有钱的账户,很多帐户是可以网上交易的。

  4. 也有设计的比较好的,比如Yahoo,Google,Microsoft等。而国内Tencent的中文验证码虽然难,但算不上好。

  二、人工智能,模式识别,机器视觉,图像处理的基本知识

  1)主要流程:

  比如我们要从一副图片中,识别出验证码;比如我们要从一副图片中,检测并识别出一张人脸。 大概有哪些步骤呢?

  1.图像采集:验证码呢,就直接通过HTTP抓HTML,然后分析出图片的url,然后下载保存就可以了。 如果是人脸检测识别,一般要通过视屏采集设备,采集回来,通过A/D转操作,存为数字图片或者视频频。

  2.预处理:检测是正确的图像格式,转换到合适的格式,压缩,剪切出ROI,去除噪音,灰度化,转换色彩空间这些。

  3.检测:车牌检测识别系统要先找到车牌的大概位置,人脸检测系统要找出图片中所有的人脸(包括疑似人脸);验证码识别呢,主要是找出文字所在的主要区域。

  4.前处理:人脸检测和识别,会对人脸在识别前作一些校正,比如面内面外的旋转,扭曲等。我这里的验证码识别,“一般”要做文字的切割

  5.训练:通过各种模式识别,机器学习算法,来挑选和训练合适数量的训练集。不是训练的样本越多越好。过学习,泛化能力差的问题可能在这里出现。这一步不是必须的,有些识别算法是不需要训练的。

  6.识别:输入待识别的处理后的图片,转换成分类器需要的输入格式,然后通过输出的类和置信度,来判断大概可能是哪个字母。识别本质上就是分类。

  2)关键概念:

  图像处理:一般指针对数字图像的某种数学处理。比如投影,钝化,锐化,细化,边缘检测,二值化,压缩,各种数据变换等等。

  1.二值化:一般图片都是彩色的,按照逼真程度,可能很多级别。为了降低计算复杂度,方便后续的处理,如果在不损失关键信息的情况下,能将图片处理成黑白两种颜色,那就最好不过了。

  2.细化:找出图像的骨架,图像线条可能是很宽的,通过细化将宽度将为1,某些地方可能大于1。不同的细化算法,可能有不同的差异,比如是否更靠近线条中间,比如是否保持联通行等。

  3.边缘检测:主要是理解边缘的概念。边缘实际上是图像中图像像素属性变化剧烈的地方。可能通过一个固定的门限值来判断,也可能是自适应的。门限可能是图像全局的,也可能是局部的。不能说那个就一定好,不过大部分时候,自适应的局部的门限可能要好点。被分析的,可能是颜色,也可能是灰度图像的灰度。

  机器视觉:利用计算机来模式实现人的视觉。 比如物体检测,定位,识别。按照对图像理解的层次的差别,分高阶和低阶的理解。

  模式识别:对事物或者现象的某种表示方式(数值,文字,我们这里主要想说的是数值),通过一些处理和分析,来描述,归类,理解,解释这些事物,现象及其某种抽象。

  人工智能:这种概念比较宽,上面这些都属于人工智能这个大的方向。简单点不要过分学院派的理解就是,把人类的很“智能”的东西给模拟出来协助生物的人来处理问题,特别是在计算机里面。

当前1/4页 1234下一页阅读全文

(0)

相关推荐

  • Perl使用Tesseract-OCR实现验证码识别教程

    一.Tesseract-OCR 是什么 An OCR Engine that was developed at HP Labs between 1985 and 1995- and now at Google 基于Leptonica(http://leptonica.com/)图形处理库开的开源图形识别引擎. 支持Linux.Windows.Mac平台, 支持.NET.C++.Python.Java等开发语言:https://code.google.com/p/tesseract-ocr/wik

  • C#实现的简单验证码识别实例

    最近做一个小玩意需要识别验证码,之前从来没有接触过识别验证码这块,这可难倒了我.所以,在网上搜索如何识别验证码,许多前辈写的博文教会了我.怕以后又忘记了,故此写篇随笔记录. 我要识别的验证码是一种非常简单,如图: 识别步骤: 1.图片灰度化(把彩色的验证码图片转换成灰色的图片).图片二值化 复制代码 代码如下: for (int i = 0; i < bmp.Width; i++)             {                 for (int j = 0; j < bmp.He

  • 使用C#的aforge类库识别验证码实例

    时间过得真快啊,转眼今年就要过去了,大半年都没有写博客了,要说时间嘛,花在泡妹子和搞英语去了,哈哈...前几天老大问我 怎么这么长时间都没写博客了,好吧,继续坚持,继续分享我的心得体会. 这个系列我们玩玩aforge.net,套用官方都话就是一个专门为开发者和研究者基于C#框架设计的,这个框架提供了不同的类库和关于类库的 资源,还有很多应用程序例子,包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,机器人等领域,这个系列研究的重点 就是瞎几把搞下AForge.Imaging这个命

  • php制作的简单验证码识别代码

    一直想写这个,过了很久今天兴趣来了索性记录下. 验证码 全自动区分计算机和人类的公开图灵测试(英语:Completely Automated Public Turing test to tell Computers and Humans Apart,简称CAPTCHA),俗称验证码,是一种区分用户是计算机和人的公共全自动程序.在CAPTCHA测试中,作为服务器的计算机会自动生成一个问题由用户来解答.这个问题可以由计算机生成并评判,但是必须只有人类才能解答.由于计算机无法解答CAPTCHA的问题,

  • 验证码识别技术

    由于现在很多网站,为了加强安全性,以及防止程序的自动操作网站,都加入的了验证码技术.但却给广大站长推广宣传网站带来的麻烦.所以我准备写这篇关于验证码识别技术的文章,不足之处在所难免!本人从来不写东西,今天为了想落伍才写了! 广大站长宣传推广自己的网站,经常要发布一些宣传广告,如果靠人工,太慢太昂贵,所以理想的办法是使用群发软件,可现在很多网站都有验证码,这成为群发软件的技术难点,而识别也就难点中的难点,好的,闲话少说,言归正传! 我举的例子是比较难于识别的验证码,不讨论不变形.不换字体.不换大小

  • python下调用pytesseract识别某网站验证码的实现方法

    一.pytesseract介绍 1.pytesseract说明 pytesseract最新版本0.1.6,网址:https://pypi.python.org/pypi/pytesseract Python-tesseract is a wrapper for google's Tesseract-OCR ( http://code.google.com/p/tesseract-ocr/ ). It is also useful as a stand-alone invocation scrip

  • C#验证码识别基础方法实例分析

    本文实例讲述了C#验证码识别基础方法,是非常实用的技巧.分享给大家供大家参考.具体方法分析如下: 背景 最近有朋友在搞一个东西,已经做的挺不错了,最后想再完美一点,于是乎就提议把这种验证码给K.O.了,于是乎就K.O.了这个验证码.达到单个图片识别时间小于200ms,500个样本人工统计正确率为95%.由于本人没有相关经验,是摸着石头过河.本着经验分享的精神,分享一下整个分析的思路.在各位大神面前献丑了. 再来看看部分识别结果如下图所示: 这里是不是看着很眼熟?下面再来具体分析一下. 处理第一步

  • PHP脚本自动识别验证码查询汽车违章

    经常有查下自己的车有没有违章,所以写了现在这个脚本,帮助查询自己的车是否违章. 主要用到,带cookie模拟表单提交和验证码识别. Tesseract-OCR 验证码识别技术,Tesseract-OCR:https://github.com/tesseract-ocr/tesseract 安装教程:https://github.com/tesseract-ocr/tesseract Tesseract-Ocr-For-PHP 把需要执行的命令,封装了一下 https://github.com/t

  • 如何识别高级的验证码的技术总结第1/4页

    一.验证码的基本知识 1. 验证码的主要目的是强制人机交互来抵御机器自动化攻击的. 2. 大部分的验证码设计者并不得要领,不了解图像处理,机器视觉,模式识别,人工智能的基本概念. 3. 利用验证码,可以发财,当然要犯罪:比如招商银行密码只有6位,验证码形同虚设,计算机很快就能破解一个有钱的账户,很多帐户是可以网上交易的. 4. 也有设计的比较好的,比如Yahoo,Google,Microsoft等.而国内Tencent的中文验证码虽然难,但算不上好. 二.人工智能,模式识别,机器视觉,图像处理的

  • Python3使用tesserocr识别字母数字验证码的实现

    一.背景 最近有个需求是从一个后台的留言网站爬取留言数据,后台管理网站必然涉及到了登录,登录就有个验证码的问题必须得解决,由于验证码是从后端生成的,并且不了解其生成规则,那就只能通过图像识别技术来做验证码识别了!通过查阅资料发现Python中的的tesserocr这个库好像使用的比较多,所以对这个库进行了一番研究,并且实现了那个后台网站验证码的识别. 二.准备工作 1. 安装tesserocr 由于我使用的Python版本是python3.5,所以一下所有操作都是基于python3的,如果有py

  • win10安装tesserocr配置 Python使用tesserocr识别字母数字验证码

    链接:https://pan.baidu.com/s/1l2yiba7ZTPUTf41ZnJ4PYw 提取码:t3bq win10安装tesserocr 首先需要下载tesseract,它为tesserocr提供底层支持.具体下载官方路径:https://github.com/UB-Mannheim/tesseract/wiki,选择对应的系统版本,可以选择一个相对不带dev的稳定版本下载,如:tesseract-ocr-setup-3.05.02-20180621.exe.然后一路安装,唯一记

  • Python 识别12306图片验证码物品的实现示例

    1.PIL介绍以及图片分割 Python 3 安装:  pip3 install Pillow 1.1 image 模块 Image模块是在Python PIL图像处理中常见的模块,主要是用于对这个图像的基本处理,它配合open.save.convert.show-等功能使用. from PIL import Image #打开文件代表打开pycharm中的文件 im = Image.open('1.jpg') #展示图片 im.show() 1.Crop类 拷贝这个图像.如果用户想粘贴一些数据

  • Python3爬虫关于识别检验滑动验证码的实例

    上节我们了解了图形验证码的识别,简单的图形验证码我们可以直接利用 Tesserocr 来识别,但是近几年又出现了一些新型验证码,如滑动验证码,比较有代表性的就是极验验证码,它需要拖动拼合滑块才可以完成验证,相对图形验证码来说识别难度上升了几个等级,本节来讲解下极验验证码的识别过程. 1. 本节目标 本节我们的目标是用程序来识别并通过极验验证码的验证,其步骤有分析识别思路.识别缺口位置.生成滑块拖动路径,最后模拟实现滑块拼合通过验证. 2. 准备工作 本次我们使用的 Python 库是 Selen

  • 不错的一篇网络管理员入门与基础技术文章第1/2页

    学习基础知识当好称职网络管理员    本着就近原则,毕业后本人在一个国企当上了一名网络管理员.企业不大,机器也就500~600台左右吧:面积不大,也就700~800平方左右吧:楼房不多,也就6~7幢吧.网管本来就是一个不错的职业.想想啊,只要开始把网络设计好.做好.考虑周到点,那后来您不就一个每天喝着茶.看看报,到月初就拿工资的主儿吗?但是,实际上我们并不是你们想象中的那么清闲啊--我们还是先来谈谈网管所需要具备的知识吧.   作为网络管理员,首先必须要知道网络到底是什么?其实网络就是一个系统,

  • 历代木马程序隐身的技术分析第1/2页

    最基本的隐藏:不可见窗体+隐藏文件 木马程序无论如何神秘,但归根究底,仍是Win32平台下的一种程序.Windows下常见的程序有两种: 1.Win32应用程序(Win32 Application),比如QQ.Office等都属于此行列. 2.Win32控制台程序(Win32 Console),比如硬盘引导修复程序FixMBR. 其中,Win32应用程序通常会有应用程序界面,比如系统中自带的"计算器"就有提供各种数字按钮的应用程序界面.木马虽然属于Win32应用程序,但其一般不包含窗体

  • Python验证码识别处理实例

    一.准备工作与代码实例 (1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, (2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样! (3)Te

  • Python网站验证码识别

    0x00 识别涉及技术 验证码识别涉及很多方面的内容.入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足. 验证码图像处理 验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像内的每个字符的文本矩阵. 读取图片 图片降噪 图片切割 图像文本输出 验证字符识别 验证码内的字符识别主要以机器学习的分类算法来完成,目前我所利用的字符识别的算法为KNN(K邻近算法)和SVM (支持向量机算法),后面我 会对这两个算法的适用场景进行详细描述.

随机推荐