js构建二叉树进行数值数组的去重与优化详解

前言

本文主要介绍了关于js构建二叉树进行数值数组的去重与优化的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

常见两层循环实现数组去重

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
let newArr = []
for (let i = 0; i < arr.length; i++) {
 let unique = true
 for (let j = 0; j < newArr.length; j++) {
  if (newArr[j] === arr[i]) {
   unique = false
   break
  }
 }
 if (unique) {
  newArr.push(arr[i])
 }
}
console.log(newArr)

构建二叉树实现去重(仅适用于数值类型的数组)

将先前遍历过的元素,构建成二叉树,树中每个结点都满足:左子结点的值 < 当前结点的值 < 右子结点的值

这样优化了判断元素是否之前出现过的过程

若元素比当前结点大,只需要判断元素是否在结点的右子树中出现过即可

若元素比当前结点小,只需要判断元素是否在结点的左子树中出现过即可

let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2]
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
 }
}
class BinaryTree {
 constructor() {
  this.root = null
  this.arr = []
 }

 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   this.root = node
   this.arr.push(value)
   return this.arr
  }
  let current = this.root
  while (true) {
   if (value > current.value) {
    if (current.right) {
     current = current.right
    } else {
     current.right = node
     this.arr.push(value)
     break
    }
   }
   if (value < current.value) {
    if (current.left) {
     current = current.left
    } else {
     current.left = node
     this.arr.push(value)
     break
    }
   }
   if (value === current.value) {
    break
   }
  }
  return this.arr
 }
}

let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
 binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)

优化思路一,记录最大最小值

记录已经插入元素的最大最小值,若比最大元素大,或最小元素小,则直接插入

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
 }
}
class BinaryTree {
 constructor() {
  this.root = null
  this.arr = []
  this.max = null
  this.min = null
 }

 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   this.root = node
   this.arr.push(value)
   this.max = value
   this.min = value
   return this.arr
  }
  if (value > this.max) {
   this.arr.push(value)
   this.max = value
   this.findMax().right = node
   return this.arr
  }
  if (value < this.min) {
   this.arr.push(value)
   this.min = value
   this.findMin().left = node
   return this.arr
  }
  let current = this.root
  while (true) {
   if (value > current.value) {
    if (current.right) {
     current = current.right
    } else {
     current.right = node
     this.arr.push(value)
     break
    }
   }
   if (value < current.value) {
    if (current.left) {
     current = current.left
    } else {
     current.left = node
     this.arr.push(value)
     break
    }
   }
   if (value === current.value) {
    break
   }
  }
  return this.arr
 }

 findMax() {
  let current = this.root
  while (current.right) {
   current = current.right
  }
  return current
 }

 findMin() {
  let current = this.root
  while (current.left) {
   current = current.left
  }
  return current
 }
}

let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
 binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)

优化思路二,构建红黑树

构建红黑树,平衡树的高度

有关红黑树的部分,请见红黑树的插入

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
console.log(Array.from(new Set(arr)))

class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
  this.parent = null
  this.color = 'red'
 }
}

class RedBlackTree {
 constructor() {
  this.root = null
  this.arr = []
 }

 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   node.color = 'black'
   this.root = node
   this.arr.push(value)
   return this
  }
  let cur = this.root
  let inserted = false
  while (true) {
   if (value > cur.value) {
    if (cur.right) {
     cur = cur.right
    } else {
     cur.right = node
     this.arr.push(value)
     node.parent = cur
     inserted = true
     break
    }
   }

   if (value < cur.value) {
    if (cur.left) {
     cur = cur.left
    } else {
     cur.left = node
     this.arr.push(value)
     node.parent = cur
     inserted = true
     break
    }
   }

   if (value === cur.value) {
    break
   }
  }
  // 调整树的结构
  if(inserted){
   this.fixTree(node)
  }
  return this
 }

 fixTree(node) {
  if (!node.parent) {
   node.color = 'black'
   this.root = node
   return
  }
  if (node.parent.color === 'black') {
   return
  }
  let son = node
  let father = node.parent
  let grandFather = father.parent
  let directionFtoG = father === grandFather.left ? 'left' : 'right'
  let uncle = grandFather[directionFtoG === 'left' ? 'right' : 'left']
  let directionStoF = son === father.left ? 'left' : 'right'
  if (!uncle || uncle.color === 'black') {
   if (directionFtoG === directionStoF) {
    if (grandFather.parent) {
     grandFather.parent[grandFather.parent.left === grandFather ? 'left' : 'right'] = father
     father.parent = grandFather.parent
    } else {
     this.root = father
     father.parent = null
    }
    father.color = 'black'
    grandFather.color = 'red'

    father[father.left === son ? 'right' : 'left'] && (father[father.left === son ? 'right' : 'left'].parent = grandFather)
    grandFather[grandFather.left === father ? 'left' : 'right'] = father[father.left === son ? 'right' : 'left']

    father[father.left === son ? 'right' : 'left'] = grandFather
    grandFather.parent = father
    return
   } else {
    grandFather[directionFtoG] = son
    son.parent = grandFather

    son[directionFtoG] && (son[directionFtoG].parent = father)
    father[directionStoF] = son[directionFtoG]

    father.parent = son
    son[directionFtoG] = father
    this.fixTree(father)
   }
  } else {
   father.color = 'black'
   uncle.color = 'black'
   grandFather.color = 'red'
   this.fixTree(grandFather)
  }
 }
}

let redBlackTree = new RedBlackTree()
for (let i = 0; i < arr.length; i++) {
 redBlackTree.insert(arr[i])
}
console.log(redBlackTree.arr)

其他去重方法

通过 Set 对象去重

[...new Set(arr)]

通过 sort() + reduce() 方法去重

排序后比较相邻元素是否相同,若不同则添加至返回的数组中

值得注意的是,排序的时候,默认 compare(2, '2') 返回 0;而 reduce() 时,进行全等比较

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let newArr = []
arr.sort((a, b) => {
 let res = a - b
 if (res !== 0) {
  return res
 } else {
  if (a === b) {
   return 0
  } else {
   if (typeof a === 'number') {
    return -1
   } else {
    return 1
   }
  }
 }
}).reduce((pre, cur) => {
 if (pre !== cur) {
  newArr.push(cur)
  return cur
 }
 return pre
}, null)

通过 includes() + map() 方法去重

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let newArr = []
arr.map(a => !newArr.includes(a) && newArr.push(a))

通过 includes() + reduce() 方法去重

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let newArr = arr.reduce((pre, cur) => {
  !pre.includes(cur) && pre.push(cur)
  return pre
}, [])

通过对象的键值对 + JSON 对象方法去重

let arr = [0, 1, 2, '2', 2, 5, 7, 11, 7, 5, 2, '2', 2]
let obj = {}
arr.map(a => {
  if(!obj[JSON.stringify(a)]){
    obj[JSON.stringify(a)] = 1
  }
})
console.log(Object.keys(obj).map(a => JSON.parse(a)))

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

您可能感兴趣的文章:

  • JS中的二叉树遍历详解
  • JS实现的二叉树算法完整实例
  • JavaScript数据结构和算法之二叉树详解
  • javascript实现二叉树的代码
  • JS二叉树的简单实现方法示例
  • JavaScript实现二叉树的先序、中序及后序遍历方法详解
  • javascript实现二叉树遍历的代码
  • JavaScript数据结构之二叉树的删除算法示例
  • JavaScript数据结构之二叉树的遍历算法示例
  • JavaScript数据结构之二叉树的查找算法示例
(0)

相关推荐

  • JavaScript数据结构和算法之二叉树详解

    二叉树的概念 二叉树(Binary Tree)是n(n>=0)个结点的有限集合,该集合或者为空集(空二叉树),或者由一个根结点和两棵互不相交的.分别称为根结点的左子树和右子树的二叉树组成. 二叉树的特点 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点.二叉树中每一个节点都是一个对象,每一个数据节点都有三个指针,分别是指向父母.左孩子和右孩子的指针.每一个节点都是通过指针相互连接的.相连指针的关系都是父子关系. 二叉树节点的定义 二叉树节点定义如下: 复制代码 代码如下: struct

  • JS实现的二叉树算法完整实例

    本文实例讲述了JS实现的二叉树算法.分享给大家供大家参考,具体如下: <!DOCTYPE HTML> <head> <title>20130328BinaryTree</title> <metahttp-equiv="Content-Type" content="text/html; charset=utf-8" /> </head> <html> <body> <

  • JavaScript数据结构之二叉树的查找算法示例

    本文实例讲述了JavaScript数据结构之二叉树的查找算法.分享给大家供大家参考,具体如下: 前面文章介绍了二叉树的遍历,现在谈谈在二叉树中进行查找.对二叉查找树来说,一般有以下三类查找:最大值,最小值和给定值. 查找最小值就是遍历左子树,直到找到最后一个结点,这是因为在二叉查找树中较小的值总是在左子节点上的. 代码如下: function getMin(){//查找最小值 var current=this.root;//指向根节点 while(current.left!=null){ cur

  • JS二叉树的简单实现方法示例

    本文实例讲述了JS二叉树的简单实现方法.分享给大家供大家参考,具体如下: 今天学习了一下 二叉树的实现,在此记录一下 简单的二叉树实现,并且实现升序和降序排序输出 function Node(data , left,right){ this.data = data; this.left = left; this.right = right; this.show = show; function show(){ return this.data; } }; function Bst(){ this

  • JS中的二叉树遍历详解

    二叉树是由根节点,左子树,右子树组成,左子树和友子树分别是一个二叉树. 这篇文章主要在JS中实现二叉树的遍历. 一个二叉树的例子 var tree = { value: 1, left: { value: 2, left: { value: 4 } }, right: { value: 3, left: { value: 5, left: { value: 7 }, right: { value: 8 } }, right: { value: 6 } } } 广度优先遍历 广度优先遍历是从二叉树

  • javascript实现二叉树遍历的代码

    前言: 紧接着上篇 二叉树的javascript实现 ,来说一下二叉树的遍历. 本次一本正经的胡说八道,以以下这个二叉树为例子进行遍历: 接着是要引入二叉树实现的代码: function Node(data, left, right) { this.data = data; this.left = left; this.right = right; this.show = show; } function show() { return this.data; } function BST() {

  • JavaScript实现二叉树的先序、中序及后序遍历方法详解

    本文实例讲述了JavaScript实现二叉树的先序.中序及后序遍历方法.分享给大家供大家参考,具体如下: 之前学数据结构的时候,学了二叉树的先序.中序.后序遍历的方法,并用C语言实现了,下文是用js实现二叉树的3种遍历,并以动画的形式展现出遍历的过程. 整个遍历过程还是采用递归的思想,原理很粗暴也很简单 先序遍历的函数: function preOrder(node){ if(!(node==null)){ divList.push(node); preOrder(node.firstEleme

  • JavaScript数据结构之二叉树的删除算法示例

    本文实例讲述了JavaScript数据结构之二叉树的删除算法.分享给大家供大家参考,具体如下: 从二叉查找树上删除节点的操作复杂程度取决于删除哪个节点.如果删除没有子节点的节点就非常简单,如果节点只有一个子节点,不管是左子节点还是右子节点,就变得稍微有点复杂,如果节点包含两个子节点就最复杂. 如果待删除节点是叶子节点,那么只需要将从父节点指向它的链接指向null. 如果待删除节点只包含一个子节点,那么原本指向它的节点就得使其指向它的子节点. 如果待删除节点包含两个子节点,那么我们可以采用两种方式

  • JavaScript数据结构之二叉树的遍历算法示例

    本文实例讲述了JavaScript数据结构之二叉树的遍历算法.分享给大家供大家参考,具体如下: 三种遍历的代码: function inOrder(node){//中序遍历 if(node!=null){ inOrder(node.left); document.write(node.show()+" "); inOrder(node.right); } } function preOrder(node){//先序遍历 if(node!=null){ document.write(no

  • javascript实现二叉树的代码

    前言: 二叉树的特点(例图只是二叉树的一种情况,不要尝试用例图推理以下结论) 除了最下面一层,每个节点都是父节点,每个节点都有且最多有两个子节点: 除了嘴上面一层,每个节点是子节点,每个节点都会有一个父节点: 最上面一层的节点(即例图中的节点50)为根节点: 最下面一层的节点称为叶子节点,他们没有子节点: 左子节点的值 < 父节点的值 <= 右节点的值 1 节点的javascript实现 // 节点对象 function Node(data, left, right) { this.data

随机推荐