Opencv实现傅里叶变换

傅里叶变换将图像分解成其正弦和余弦分量,它将图像由空域转换为时域。任何函数都可以近似的表示为无数正弦和余弦函数的和,傅里叶变换就是实现这一步的,数学上一个二维图像的傅里叶变换为:

公式中,f是图像在空域的值,F是频域的值。转换的结果是复数,但是不可能通过一个真实图像和一个复杂的图像或通过大小和相位图像去显示这样的一个图像。然而,在整个图像处理算法只对大小图像是感兴趣的,因为这包含了所有我们需要的图像几何结构的信息。

可通过以下几步显示一副傅里叶变换后的图像

1、将图像扩展到它的最佳尺寸,DFT(直接傅里叶变换)的性能依赖于图片的尺寸,当图像是2,3,5的倍数时往往是最快的。因此,为了达到最优性能通常采用垫边界值的方法,得到一个最佳的尺寸。

2、为傅立叶变换结果的实部和虚部分配存储空间。傅里叶变换的结果是一个复数,这意味着每幅图的结果都有一个实部和虚部,此外,频域范围远远大于它对应的空间范围。因此,我们这些通常至少以一个浮点数格式存储这些数值。因此,我们会将我们的输入图像转换为这种类型并且扩展它与另一通道存放复数值

3、进行傅里叶变换。

4、将复数转换为幅值,DFT的幅值由以下公式得出:

5、切换到对数刻度。对图像进行对数尺度的缩放,结果证明,傅立叶系数矩阵的动态范围太大,无法显示在屏幕上,我们无法通过这样去观察一些小的和高的变化值。因此那些高的数值将转化成白点而小的数值会变成黑点,使用灰度值进行可视化,我们可以将线性刻度转换为对数刻度,以便于观察。

6、剪切和重分布幅度图象,第一步我们扩展了图像,这里我们去掉扩展的那部分值,基于可视化的目的,我们还可以重新排列结果的象限,使原点(0,0)对应于与图像中心

7、归一化。目前得到的幅值图像仍然太大,超出了显示的范围,归一化这范围内的值,可以进一步达到可视化的目的

实现程序

void _DFT(){
 //1以灰度模式读取原图像并显示
 Mat srcImage = imread("miFan.jpg",0);
 if (!srcImage.data){ cout << "Error\n"; }
 imshow("原图像", srcImage);

 //2将输入图像扩展到最佳尺寸,边界用0补充
 int m = getOptimalDFTSize(srcImage.rows);
 int n = getOptimalDFTSize(srcImage.cols);

 //将添加的像素初始化为0
 Mat padded;
 copyMakeBorder(srcImage, padded, 0, m - srcImage.rows,
  0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0));

 //3为傅里叶变换的结果(实部和虚部)分配存储空间
 //将数组组合合并为一个多通道数组
 Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
 Mat complexI;
 merge(planes, 2, complexI);

 //4进行傅里叶变换
 dft(complexI, complexI);

 //5将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
 //将多通道数组分离为几个单通道数组
 split(complexI, planes);//planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
 magnitude(planes[0], planes[1], planes[0]);
 Mat magImage = planes[0];

 //6进行对数尺度缩放
 magImage += Scalar::all(1);
 log(magImage, magImage);//求自然对数

 //7剪切和重分布幅度图象限
 //若有奇数行或奇数列,进行频谱剪裁
 magImage = magImage(Rect(0, 0, magImage.cols&-2, magImage.rows&-2));
 //重新排列傅立叶图像中的象限,使得原点位于图像中心
 int cx = magImage.cols / 2;
 int cy = magImage.rows / 2;
 Mat q0(magImage, Rect(0, 0, cx, cy));
 Mat q1(magImage, Rect(cx, 0, cx, cy));
 Mat q2(magImage, Rect(0,cy,cx,cy));
 Mat q3(magImage, Rect(cx,cy,cx,cy));
 //交换象限(左上与右下进行交换)
 Mat tmp;
 q0.copyTo(tmp);
 q3.copyTo(q0);
 tmp.copyTo(q3);
 //交换象限(右上与左下进行交换)
 q1.copyTo(tmp);
 q2.copyTo(q1);
 tmp.copyTo(q2);

 //8归一化,用0到1的浮点值将矩阵变换为可视的图像格式
 normalize(magImage, magImage, 0, 1, CV_MINMAX);

 //9显示
 imshow("频谱增幅", magImage);

 waitKey();
}

傅里叶变换后的图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • C++实现二维图形的傅里叶变换
(0)

相关推荐

  • C++实现二维图形的傅里叶变换

    本文实例讲述了C++实现二维图形的傅里叶变换的方法.有一定的借鉴价值.分享给大家供大家参考. 具体代码如下: // Fourier.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "stdio.h" #include "math.h" #include <cv.h> #include <highg

  • opencv python 傅里叶变换的使用

    理论 傅立叶变换用于分析各种滤波器的频率特性,对于图像,2D离散傅里叶变换(DFT)用于找到频域.快速傅里叶变换(FFT)的快速算法用于计算DFT. 于一个正弦信号,x(t)=Asin(2πft),我们可以说 f 是信号的频率,如果它的频率域被接受,我们可以看到 f 的峰值.如果信号被采样来形成一个离散信号,我们得到相同的频率域,但是在[−π,π] or [0,2π]范围内是周期性的 (or [0,N] for N-point DFT). 可以将图像视为在两个方向上采样的信号.因此,在X和Y方向

  • Opencv实现傅里叶变换

    傅里叶变换将图像分解成其正弦和余弦分量,它将图像由空域转换为时域.任何函数都可以近似的表示为无数正弦和余弦函数的和,傅里叶变换就是实现这一步的,数学上一个二维图像的傅里叶变换为: 公式中,f是图像在空域的值,F是频域的值.转换的结果是复数,但是不可能通过一个真实图像和一个复杂的图像或通过大小和相位图像去显示这样的一个图像.然而,在整个图像处理算法只对大小图像是感兴趣的,因为这包含了所有我们需要的图像几何结构的信息. 可通过以下几步显示一副傅里叶变换后的图像 1.将图像扩展到它的最佳尺寸,DFT(

  • python用opencv 图像傅里叶变换

    傅里叶变换 dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT) 傅里叶逆变换 img_back = cv.idft(f_ishift) 实验:将图像转换到频率域,低通滤波,将频率域转回到时域,显示图像 import numpy as np import cv2 as cv from matplotlib import pyplot as plt img = cv.imread('d:/paojie_g.jpg',0) rows,

  • OpenCV图像变换之傅里叶变换的一些应用

    目录 前言 1. 效果图 2. 原理 3. 源码 3.1 Numpy实现傅里叶变换 3.2 OpenCV实现傅里叶变换 3.3 HPF or LPF? 参考 总结 前言 这篇博客将介绍OpenCV中的图像变换,包括用Numpy.OpenCV计算图像的傅里叶变换,以及傅里叶变换的一些应用: 2D Discrete Fourier Transform (DFT)二维离散傅里叶变换 Fast Fourier Transform (FFT) 快速傅里叶变换 傅立叶变换用于分析各种滤波器的频率特性.对于图

  • Python OpenCV实现图像傅里叶变换

    目录 二维离散傅里叶变换(DFT) OpenCV 实现图像傅里叶变换(cv.dft) 示例代码 二维离散傅里叶变换(DFT) 对于二维图像处理,通常使用 x , y x, yx,y 表示离散的空间域坐标变量,用 u , v u,vu,v 表示离散的频率域变量.二维离散傅里叶变换(DFT)和反变换(IDFT)为: 二维离散傅里叶变换也可以用极坐标表示: 傅里叶频谱(Fourier spectrum)为: 傅里叶相位谱(Fourier phase spectrum)为: 傅里叶功率谱(Fourier

  • opencv 傅里叶变换的实现

    目录 傅里叶变换 理论基础 Numpy实现傅里叶变换 实现傅里叶变换 实现逆傅里叶变换 高通滤波示例 OpenCV实现傅里叶变换 实现逆傅里叶变换 低通滤波示例 傅里叶变换 图像处理一般分为空间域处理和频率域处理. 空间域处理是直接对图像内的像素进行处理. 空间域处理主要划分为灰度变换和空间滤波两种形式. 灰度变换是对图像内的单个像素进行处理,比如调节对比度和处理阈值等. 空间滤波涉及图像质量的改变,例如图像平滑处理.空间域处理的计算简单方便,运算速度更快. 频率域处理是先将图像变换到频率域,然

  • OpenCV半小时掌握基本操作之傅里叶变换

    目录 概述 高频 vs 低频 傅里叶变换 代码详解 输入转换 傅里叶变换 获取幅度谱 傅里叶逆变换 获取低频 获取高频 概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. 高频 vs 低频 高频 vs 低频: 高频: 变换剧烈的灰度分量, 例如边界 低频: 变换缓慢的灰度分量, 例如一片大海 滤波: 低通滤波器: 只保留低频, 会使得图像模糊 高通滤波器: 只保留高频, 会使得图像细节增强 傅里叶变换 傅里叶变化 (F

  • 详解python中GPU版本的opencv常用方法介绍

    引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

  • OpenCV-Python使用cv2实现傅里叶变换

    前言 在前一篇的博文中,我们详细讲解了傅里叶变换的原理以及使用Numpy库实现傅里叶变换.但是其实OpenCV有直接实现傅里叶变换的函数. 在OpenCV中,我们通过cv2.dft()来实现傅里叶变换,使用cv2.idft()来实现逆傅里叶变换.两个函数的定义如下: cv2.dft(原始图像,转换标识) 这里的原始图像必须是np.float32格式.所以,我们首先需要使用cv2.float32()函数将图像转换.而转换标识的值通常为cv2.DFT_COMPLEX_OUTPUT,用来输出一个复数阵

  • opencv python简易文档之图像处理算法

    目录 将图片转为灰度图 HSV 图像阈值 图像平滑 形态学-腐蚀操作 形态学-膨胀操作 开运算与闭运算 梯度运算 礼帽与黑帽 图像梯度处理 Canny边缘检测 图像金字塔 图像轮廓 直方图 直方图均衡化: 自适应均衡化: 傅里叶变换 模板匹配 总结 上一篇已经给大家介绍了opencv python图片基本操作的相关内容,这里继续介绍图像处理算法,下面来一起看看吧 将图片转为灰度图 import cv2 #opencv读取的格式是BGR img=cv2.imread('cat.jpg') # 将图

随机推荐