Python图像运算之顶帽运算和底帽运算详解

目录
  • 一.图像顶帽运算
  • 二.图像底帽运算
  • 三.总结

一.图像顶帽运算

图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像顶帽运算是用一个结构元通过开运算从一幅图像中删除物体,顶帽运算用于暗背景上的亮物体,它的一个重要用途是校正不均匀光照的影响。其效果图如图1所示。

在Python中,图像顶帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_TOPHAT表示顶帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

  • src表示原始图像
  • cv2.MORPH_TOPHAT表示图像顶帽运算
  • kernel表示卷积核,可以用numpy.ones()函数构建

假设存在一张光照不均匀的米粒图像,如图2所示,我们需要调用图像顶帽运算解决光照不均匀的问题。

图像顶帽运算的Python代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np  

#读取图片
src = cv2.imread('test01.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10,10), np.uint8)

#图像顶帽运算
result = cv2.morphologyEx(src, cv2.MORPH_TOPHAT, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如图3所示。

下图展示了“米粒”顶帽运算的效果图,可以看到顶帽运算后的图像删除了大部分非均匀背景,并将米粒与背景分离开来。

为什么图像顶帽运算会消除光照不均匀的效果呢?

通常可以利用灰度三维图来进行解释该算法。灰度三维图主要调用Axes3D包实现,对原图绘制灰度三维图的代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter

#读取图像
img = cv.imread("test02.png")
img = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
imgd = np.array(img)      #image类转numpy

#准备数据
sp = img.shape
h = int(sp[0])        #图像高度(rows)
w = int(sp[1])        #图像宽度(colums) of image

#绘图初始处理
fig = plt.figure(figsize=(16,12))
ax = fig.gca(projection="3d")

x = np.arange(0, w, 1)
y = np.arange(0, h, 1)
x, y = np.meshgrid(x,y)
z = imgd
surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)  

#自定义z轴
ax.set_zlim(-10, 255)
ax.zaxis.set_major_locator(LinearLocator(10))   #设置z轴网格线的疏密

#将z的value字符串转为float并保留2位小数
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) 

# 设置坐标轴的label和标题
ax.set_xlabel('x', size=15)
ax.set_ylabel('y', size=15)
ax.set_zlabel('z', size=15)
ax.set_title("surface plot", weight='bold', size=20)

#添加右侧的色卡条
fig.colorbar(surf, shrink=0.6, aspect=8)
plt.show()

运行结果如图5所示,其中x表示原图像中的宽度坐标,y表示原图像中的高度坐标,z表示像素点(x, y)的灰度值。

从图像中的像素走势显示了该图受各部分光照不均匀的影响,从而造成背景灰度不均现象,其中凹陷对应图像中灰度值比较小的区域。

通过图像白帽运算后的图像灰度三维图如图6所示,对应的灰度更集中于10至100区间,由此证明了不均匀的背景被大致消除了,有利于后续的阈值分割或图像分割。

绘制三维图增加的顶帽运算核心代码如下:

二.图像底帽运算

图像底帽运算(bottom-hat transformation)又称为图像黑帽运算,它是用图像闭运算操作减去原始图像后的结果,从而获取图像内部的小孔或前景色中黑点,也常用于解决由于光照不均匀图像分割出错的问题。其公式定义如下:

图像底帽运算是用一个结构元通过闭运算从一幅图像中删除物体,常用于校正不均匀光照的影响。其效果图如图8所示。

在Python中,图像底帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_BLACKHAT表示底帽或黑帽处理,函数原型如下:

dst = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

  • src表示原始图像
  • cv2.MORPH_BLACKHAT表示图像底帽或黑帽运算
  • kernel表示卷积核,可以用numpy.ones()函数构建

Python实现图像底帽运算的代码如下所示:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np  

#读取图片
src = cv2.imread('test02.png', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((10, 10), np.uint8)

#图像黑帽运算
result = cv2.morphologyEx(src, cv2.MORPH_BLACKHAT, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其运行结果如图9所示:

三.总结

该系列主要讲解了图像数学形态学知识,结合原理和代码详细介绍了图像腐蚀、图像膨胀、图像开运算和闭运算、图像顶帽运算和图像底帽运算等操作。这篇文章详细介绍了顶帽运算和底帽运算,它们将为后续的图像分割和图像识别提供有效支撑。

到此这篇关于Python图像运算之顶帽运算和底帽运算详解的文章就介绍到这了,更多相关Python 顶帽运算 底帽运算内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python图像运算之图像点运算与灰度化处理详解

    目录 一.图像点运算概念 二.图像灰度化处理 三.基于像素操作的图像灰度化处理 1.最大值灰度处理方法 2.平均灰度处理方法 3.加权平均灰度处理方法 四.总结 一.图像点运算概念 图像点运算(Point Operation)指对于一幅输入图像,将产生一幅输出图像,输出图像的每个像素点的灰度值由输入像素点决定.点运算实际上是灰度到灰度的映射过程,通过映射变换来达到增强或者减弱图像的灰度.还可以对图像进行求灰度直方图.线性变换.非线性变换以及图像骨架的提取.它与相邻的像素之间没有运算关系,是一种简

  • Python图像运算之图像灰度非线性变换详解

    目录 一.图像灰度非线性变换 二.图像灰度对数变换 三.图像灰度伽玛变换 四.总结 一.图像灰度非线性变换 原始图像的灰度值按照DB=DA×DA/255的公式进行非线性变换,其代码如下: # -*- coding: utf-8 -*- # By:Eastmount import cv2 import numpy as np import matplotlib.pyplot as plt #读取原始图像 img = cv2.imread('luo.png') #图像灰度转换 grayImage =

  • Python图像运算之图像阈值化处理详解

    目录 一.图像阈值化 二.固定阈值化处理 1.二进制阈值化 2.反二进制阈值化 3.截断阈值化 4.阈值化为0 5.反阈值化为0 三.自适应阈值化处理 四.总结 一.图像阈值化 图像阈值化(Binarization)旨在剔除掉图像中一些低于或高于一定值的像素,从而提取图像中的物体,将图像的背景和噪声区分开来. 灰度化处理后的图像中,每个像素都只有一个灰度值,其大小表示明暗程度.阈值化处理可以将图像中的像素划分为两类颜色,常见的阈值化算法如公式(1)所示: 当某个像素点的灰度Gray(i,j)小于

  • Python图像运算之图像灰度线性变换详解

    目录 一.灰度线性变换 二.图像灰度上移变换 三.图像对比度增强变换 四.图像对比度减弱变换 五.图像灰度反色变换 六.总结 一.灰度线性变换 图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度.灰度线性变换的计算公式如(12-1)所示: 该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距[1-4]. 当α=1,b=0时,保持原始图像 当α=1,b!=0时,图像

  • Python图像运算之腐蚀与膨胀详解

    目录 前言 一.形态学理论知识 二.图像腐蚀 三.图像膨胀 四.总结 前言 这篇文章将详细讲解开始图像形态学知识,主要介绍图像腐蚀处理和膨胀处理.数学形态学(Mathematical Morphology)是一种应用于图像处理和模式识别领域的新方法.数学形态学(也称图像代数)表示以形态为基础对图像进行分析的数学工具,其基本思想是用具有一定形态的结构元素去量度和提取图像中对应形状以达到对图像分析和识别的目的. 一.形态学理论知识 数学形态学的应用可以简化图像数据,保持它们基本的形状特征,并出去不相

  • Python图像锐化与边缘检测之Sobel与Laplacian算子详解

    目录 一.Sobel算子 二.Laplacian算子 三.总结 一.Sobel算子 Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导.该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘.Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓[1-4]. Sobel算子的边缘定位更准确,常用于噪声较多.灰度

  • Python图像锐化与边缘检测之Scharr,Canny,LOG算子详解

    目录 一.Scharr算子 二.Cann算子 三.LOG算子 四.总结 一.Scharr算子 由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个3×3的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显.Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3×3滤波器实现图像边缘提取更推荐使用Scharr算子. Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是

  • Python图像运算之顶帽运算和底帽运算详解

    目录 一.图像顶帽运算 二.图像底帽运算 三.总结 一.图像顶帽运算 图像顶帽运算(top-hat transformation)又称为图像礼帽运算,它是用原始图像减去图像开运算后的结果,常用于解决由于光照不均匀图像分割出错的问题.其公式定义如下: 图像顶帽运算是用一个结构元通过开运算从一幅图像中删除物体,顶帽运算用于暗背景上的亮物体,它的一个重要用途是校正不均匀光照的影响.其效果图如图1所示. 在Python中,图像顶帽运算主要调用morphologyEx()实现,其中参数cv2.MORPH_

  • 对python中的float除法和整除法的实例详解

    从python2.2开始,便有两种除法运算符:"/"."//".两者最大区别在: python2.2前的版本和python2.2以后3.0以前的版本的默认情况下,"/"所做的除法是以一种两个数或者多个数出现一个浮点数结果就以浮点数的形式表示,即float除法 "//"所做的除法则不相同,"//"不管两者出现任何数,都以整除结果为准,不对小数部分进行处理,直接抛弃,也就是整除法 以下是笔者在编译器测试的数据,

  • Python统计可散列的对象之容器Counter详解

    一.初始化Counter Counter支持3种形式的初始化,比如提供一个数组,一个字典,或单独键值对"="式赋值.具体初始化的代码如下所示: import collections a = collections.Counter(['a', 'a', 'b', 'b', 'b', 'c']) b = collections.Counter({"a": 2, "b": 3, "c": 1}) c = collections.Co

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • python二维码操作:对QRCode和MyQR入门详解

    python是所有编程语言中模块最丰富的 生活中常见的二维码功能在使用python第三方库来生成十分容易 三个大矩形是定位图案,用于标记二维码的大小.这三个定位图案有白边,通过这三个矩形就可以标识一个二维码了. QRCode 生成这个二维码只用一行 import qrcode qrcode.make("不睡觉干嘛呢").get_image().show() #设置URL必须添加http:// 安装导入QRCode pip install qrcode #方法多,体量小 安装导入MyQR

  • python实现图像处理之PiL依赖库的案例应用详解

    Python实现图像处理:PiL依赖库的应用 本文包含的练习题主要是PIL依赖库,即pillow相关的应用. 练习一:使用python给图片增加数字 实现思路: 使用PIL的Image.open导入图片. 获取图片的大小. 调用ImageDraw,在图片的指定位置写上数字. #coding=utf-8 #Auther by Alice #在图片的右上角增加一个数字 from PIL import Image,ImageFont,ImageDraw image = Image.open('/Use

  • python类:class创建、数据方法属性及访问控制详解

    在Python中,可以通过class关键字定义自己的类,然后通过自定义的类对象类创建实例对象. python中创建类 创建一个Student的类,并且实现了这个类的初始化函数"__init__": class Student(object):     count = 0     books = []     def __init__(self, name):         self.name = name 接下来就通过上面的Student类来看看Python中类的相关内容. 类构造和

  • Python 3.6 性能测试框架Locust安装及使用方法(详解)

    背景 Python3.6 性能测试框架Locust的搭建与使用 基础 python版本:python3.6 开发工具:pycharm Locust的安装与配置 点击"File"→"setting" 点击"setting",进入设置窗口,选择"Project Interpreter" 点击"+" 输入需要"Locust",点击"Install Package" 安装完成

随机推荐