利用Java+Selenium+OpenCV模拟实现网页滑动验证

目录
  • 一、需求分析
  • 二、模拟步骤
    • 1、使用selenium打开某音网页
    • 2、找到小滑块以及小滑块所在的背景图
    • 3、计算小滑块需要滑动的距离
    • 4、按住小滑块并滑动
  • 三、学习过程中比较棘手的问题
    • 1、截图问题
    • 2、返回结果与实际滑动距离相差太多,甚至无规律可循
    • 3、openCV的下载安装
  • 四、总结

目前很多网页都有滑动验证,目的就是防止不良爬虫扒他们网站的数据,我这次本着学习的目的使用Java和selenium学习解决滑动验证的问题,前前后后花了一周时间(抄代码),终于成功了某音的滑动验证!

效果展示:

一、需求分析

要模拟滑动验证总共就两步:

1、找到小滑块

2、按住小滑块,滑动一段距离

第一步很简单,直接通过xPath找到,比较重要和困难的是第二步中距离的问题,我花了那么多的时间在这次学习中,主要是耗在计算需要滑动的距离。

在面向百度编程的过程中看到了很多学习资料,大体上是同一个方法:使用opencv计算机视觉工具让两张处理过的图像进行比对,从而计算出滑动的距离。

二、模拟步骤

1、使用selenium打开某音网页

直接打开

2、找到小滑块以及小滑块所在的背景图

打开前端调式工具,F12,定位小滑块和背景图的位置,复制xpath,然后用selenium查找元素

eg: driver.findElement(By.xpath("小滑块的xpath"));

3、计算小滑块需要滑动的距离

这一部分是最重要的,所以需要重点记录,学习一次,以后遇到同样的问题就能马上解决。

步骤:

1、保存小滑块图像和小滑块背景图

如图,使用selenium可以很方便的获取到这两张图片。

2、将背景图进行指定比例和区域的剪裁

在这一步中有两个比较重要的参数:

1、小滑块的top值

2、网页当前显示的图像和原图像的大小比例,在计算滑动距离需要用到

剪裁用的是 BufferedImage的getSubimage方法,一共有四个参数

image = image.getSubimage(x, y, width, height);

x和y 为截图后图片左上角的坐标值,如果x和y都是0,那么就从原图的左上角开始截起,width和height分别是截图后图片的长和宽。

在某音的滑动验证中,x设置成小滑块的宽度,y设置为小滑块的top,top也就是小滑块距离背景图上边界的像素

width设置为背景图原来的宽度-小滑块的宽度

height设置为小滑块的高度

最后截出来的图片类似这样,一定要把背景图的缺口包含进去

3、将小滑块图像二值化

从这里开始要用到opencv(开源计算机视觉库)

首先将保存的小滑块图片转灰度,然后将转灰度的下滑快二值化,二值化就是非黑即白,了解过后才知道目前很多机器识别使用的原理和这个差不多。

代码如下:

           //小滑块Mat对象
           Mat s_mat = Imgcodecs.imread(sFile.getPath());

           // 转灰度图像
           Mat s_newMat = new Mat();
           Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);
           // 二值化图像
           binaryzation(s_newMat);binaryzation是一个方法,在源码中有
           Imgcodecs.imwrite(sFile.getPath(), s_newMat);

4、将二值化的小滑块和剪裁的背景图进行比对

代码我是抄的,看不懂,就不放在这了。

我研究了好久,因为没有学习过opencv,计算过程调用的几个方法我还不是很懂,但是最后的返回值需要根据实际情况来调整,要不然验证成功率几乎为0。

4、按住小滑块并滑动

滑动过程不能让程序一步走完,不然网页会认为你是爬虫,即使能滑到指定位置也会验证失败。滑动过程应该尽量模拟人工操作。

     /**
     * 模拟移动滑块
     * @param driver
     * @param ele 小滑块
     * @param distance 滑动距离
     */
    public void move(ChromeDriver driver,WebElement ele,int distance) {
        int randomTime = 0;
        if (distance > 90) {
            randomTime = 250;
        } else if (distance > 80 && distance <= 90) {
            randomTime = 150;
        }
        List<Integer> track = getMoveTrack(distance - 2);
        int moveY = 1;
        try {
            Actions actions = new Actions(driver);
            actions.clickAndHold(ele).perform();
            Thread.sleep(200);
            for (int i = 0; i < track.size(); i++) {
                actions.moveByOffset(track.get(i), moveY).perform();
                Thread.sleep(new Random().nextInt(300) + randomTime);
            }
            Thread.sleep(200);
            actions.release(ele).perform();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 根据距离获取滑动轨迹
     * @param distance 需要移动的距离
     * @return
     */
    public static List<Integer> getMoveTrack(int distance) {
        List<Integer> track = new ArrayList<>();// 移动轨迹
        Random random = new Random();
        int current = 0;// 已经移动的距离
        int mid = distance * 4 / 5;// 减速阈值
        int a = 0;
        int move = 0;// 每次循环移动的距离
        while (true) {
            a = random.nextInt(10);
            if (current <= mid) {
                move += a;// 不断加速
            } else {
                move -= a;
            }
            if ((current + move) < distance) {
                track.add(move);
            } else {
                track.add(distance - current);
                break;
            }
            current += move;
        }
        return track;
    }

三、学习过程中比较棘手的问题

1、截图问题

我一开始截出来的图包含的小滑块缺口总是不完整的,经过一番截图参数调试后,我发现某音小滑块top的单位他丫的是em,这像素的大小用em???真不愧是某音,别家都是px,你偏偏要em......然后我又开始面向百度,最后得到的结论是默认浏览器1em = 10px,我在top *10之后还是截不到完整的小滑块缺口。

我这会直接上网页调试工具,最终调式出来1em约等于100px,最后top *100截出来的图片就对了。

2、返回结果与实际滑动距离相差太多,甚至无规律可循

好不容易把代码敲完,之后的测试却一直是失败的,无论在计算的结果加减乘除某个数值都不行。

导致原因:因为在网页上显示的图片和实际上图片大小是不同的,依靠opencv比对计算出来的滑动距离是按照原图大小计算的。

解决办法:只需要将返回值乘上显示图片与原图宽度的比例即可。

注意:因为之前在获取小滑块图像时,top的值为网页显示的大小,计算过程中是按照原图大小计算的,所以获取的top值乘以100后还要乘上原图宽度与显示图像宽度的比例。

3、openCV的下载安装

官网实在是太慢了,直接搜索安装包下载了。

四、总结

这次学习经历前后共花了一周,恰逢考试周,考试科目大多没有复习好,也不知是不是亏了,滑动验证是网页登录或者搜索会经常遇到的问题,模拟滑动解锁主要能够锻炼我们解决问题的能力。

图像在计算机中实际是一个个像素组成的,每一个像素包含三个数值,所以才能够对图像进行二值化、比对。比对过程是在看不懂,不过也不必每一行代码都看懂,能够解决问题才是最重要的。

以下为源码(仅用于学习交流):

package indi.imitateslide;

import org.apache.commons.io.FileUtils;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.interactions.Actions;

import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

/**
 * 自动化模拟滑动验证
 */
public class ImitateSlide {
    //驱动
    private ChromeDriver driver;

    public ImitateSlide(ChromeDriver driver){
        this.driver = driver;
    }

    public void slide(String url,String sliderXpath) throws Exception {
        driver.get(url);
        Thread.sleep(2000);

        //获取滑块
        WebElement ele = waitWebElement(driver,By.xpath(sliderXpath),500);

        //获取滑动背景图
        String bUrl = waitWebElement(driver,By.xpath("//*[@id=\"captcha-verify-image\"]"),500).getAttribute("src");
        //获取小滑块图片
        String sUrl = waitWebElement(driver,By.xpath("//*[@id=\"captcha_container\"]/div/div[2]/img[2]"),500).getAttribute("src");
        //获取高度
        String topStr = waitWebElement(driver,By.xpath("//*[@id=\"captcha_container\"]/div/div[2]/img[2]"),500).getAttribute("style").substring(16,20);
        System.out.println("字符串高度是: "+topStr);
        double dTop = Double.parseDouble(topStr);
        dTop *= 160;
        int top = (int) dTop;
        System.out.println("最终高度是: "+top);

        //计算移动的距离
        double dDis = Double.parseDouble(getDistance(bUrl,sUrl,top));
        System.out.println("计算出的距离为: "+dDis);
        int distance = (int) dDis;
        System.out.println("最终移动的距离为: "+distance);
        Thread.sleep(500);
        //滑动
        move(driver,ele,distance);
        Thread.sleep(1000);
        driver.quit();
    }

    /**
     * 模拟移动滑块
     * @param driver
     * @param ele
     * @param distance
     */
    public void move(ChromeDriver driver,WebElement ele,int distance) {
        int randomTime = 0;
        if (distance > 90) {
            randomTime = 250;
        } else if (distance > 80 && distance <= 90) {
            randomTime = 150;
        }
        List<Integer> track = getMoveTrack(distance - 2);
        int moveY = 1;
        try {
            Actions actions = new Actions(driver);
            actions.clickAndHold(ele).perform();
            Thread.sleep(200);
            for (int i = 0; i < track.size(); i++) {
                actions.moveByOffset(track.get(i), moveY).perform();
                Thread.sleep(new Random().nextInt(300) + randomTime);
            }
            Thread.sleep(200);
            actions.release(ele).perform();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    /**
     * 根据距离获取滑动轨迹
     * @param distance 需要移动的距离
     * @return
     */
    public static List<Integer> getMoveTrack(int distance) {
        List<Integer> track = new ArrayList<>();// 移动轨迹
        Random random = new Random();
        int current = 0;// 已经移动的距离
        int mid = distance * 4 / 5;// 减速阈值
        int a = 0;
        int move = 0;// 每次循环移动的距离
        while (true) {
            a = random.nextInt(10);
            if (current <= mid) {
                move += a;// 不断加速
            } else {
                move -= a;
            }
            if ((current + move) < distance) {
                track.add(move);
            } else {
                track.add(distance - current);
                break;
            }
            current += move;
        }
        return track;
    }

    /**
     * 获取滑块移动的距离
     * @param bUrl 滑动背景图
     * @param sUrl 小滑块
     * @param top 高度
     * @return
     */
    public String getDistance(String bUrl, String sUrl, int top) {
        System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
        File bFile = new File("D:\\douyin_b1.jpg");
        File sFile = new File("D:\\douyin_s1.jpg");
        try {
            //将图片复制保存到指定路径
            FileUtils.copyURLToFile(new URL(bUrl), bFile);
            FileUtils.copyURLToFile(new URL(sUrl), sFile);

            BufferedImage bgBI = ImageIO.read(bFile);
            BufferedImage sBI = ImageIO.read(sFile);

            // 裁剪
            System.out.println("背景图片的宽度是: "+bgBI.getWidth());
            System.out.println("小图片的高度是:"+sBI.getHeight());
            bgBI = bgBI.getSubimage(sBI.getWidth(), top, bgBI.getWidth() - 110, sBI.getHeight());
            ImageIO.write(bgBI, "png", bFile);

            Mat s_mat = Imgcodecs.imread(sFile.getPath());
            Mat b_mat = Imgcodecs.imread(bFile.getPath());

            // 转灰度图像
            Mat s_newMat = new Mat();
            Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);

            // 二值化图像
            binaryzation(s_newMat);
            Imgcodecs.imwrite(sFile.getPath(), s_newMat);

            //让两张图片进行比对
            int result_rows = b_mat.rows() - s_mat.rows() + 1;
            int result_cols = b_mat.cols() - s_mat.cols() + 1;
            Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
            Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 归一化平方差匹配法
            // 归一化相关匹配法
            Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat());

            //以下看不懂
            Point matchLocation = new Point();
            Core.MinMaxLocResult mmlr = Core.minMaxLoc(g_result);
            matchLocation = mmlr.maxLoc; // 此处使用maxLoc还是minLoc取决于使用的匹配算法
            Imgproc.rectangle(b_mat, matchLocation,
                    new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 255, 0, 0));
            //返回值就是要移动的距离,在这里需要加上被裁剪掉的宽度再减去小滑块的宽度,最后乘上相应的比例。
            return "" + ((matchLocation.x + s_mat.cols()) / 1.62);
        } catch (Throwable e) {
            e.printStackTrace();
            return null;
        } finally {
            //删除保存的滑块以及背景图片
            bFile.delete();
            sFile.delete();
        }
    }

    /**
     * 将图像二值化,固定代码
     * @param mat
     */
    public static void binaryzation(Mat mat) {
        int BLACK = 0;
        int WHITE = 255;
        int ucThre = 0, ucThre_new = 127;
        int nBack_count, nData_count;
        int nBack_sum, nData_sum;
        int nValue;
        int i, j;
        int width = mat.width(), height = mat.height();
        // 寻找最佳的阙值
        while (ucThre != ucThre_new) {
            nBack_sum = nData_sum = 0;
            nBack_count = nData_count = 0;

            for (j = 0; j < height; ++j) {
                for (i = 0; i < width; i++) {
                    nValue = (int) mat.get(j, i)[0];

                    if (nValue > ucThre_new) {
                        nBack_sum += nValue;
                        nBack_count++;
                    } else {
                        nData_sum += nValue;
                        nData_count++;
                    }
                }
            }
            nBack_sum = nBack_sum / nBack_count;
            nData_sum = nData_sum / nData_count;
            ucThre = ucThre_new;
            ucThre_new = (nBack_sum + nData_sum) / 2;
        }
        // 二值化处理
        int nBlack = 0;
        int nWhite = 0;
        for (j = 0; j < height; ++j) {
            for (i = 0; i < width; ++i) {
                nValue = (int) mat.get(j, i)[0];
                if (nValue > ucThre_new) {
                    mat.put(j, i, WHITE);
                    nWhite++;
                } else {
                    mat.put(j, i, BLACK);
                    nBlack++;
                }
            }
        }
        // 确保白底黑字
        if (nBlack > nWhite) {
            for (j = 0; j < height; ++j) {
                for (i = 0; i < width; ++i) {
                    nValue = (int) (mat.get(j, i)[0]);
                    if (nValue == 0) {
                        mat.put(j, i, WHITE);
                    } else {
                        mat.put(j, i, BLACK);
                    }
                }
            }
        }
    }

    /**
     * 元素延时加载,等到元素出现时返回该元素,超过500*0.05s后无响应则抛出NOSuchElement异常
     * @param driver
     * @param by
     * @param count
     * @return WebElement
     * @throws Exception
     */
    private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception {
        WebElement webElement = null;
        boolean isWait = false;
        for (int k = 0; k < count; k++) {
            try {
                webElement = driver.findElement(by);
                if (isWait)
                    System.out.println(" ok!");
                return webElement;
            } catch (org.openqa.selenium.NoSuchElementException ex) {
                isWait = true;
                if (k == 0)
                    System.out.print("waitWebElement(" + by.toString() + ")");
                else
                    System.out.print(".");
                Thread.sleep(50);
            }
        }
        if (isWait)
            System.out.println(" outTime!");
        return null;
    }
}

到此这篇关于利用Java+Selenium+OpenCV模拟实现网页滑动验证的文章就介绍到这了,更多相关Java Selenium OpenCV滑动验证内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用java + selenium + OpenCV破解网易易盾滑动验证码的示例

    网易易盾:dun.163.com * 验证码地址:https://dun.163.com/trial/jigsaw * 使用OpenCv模板匹配 * Java + Selenium + OpenCV 产品样例 接下来就是见证奇迹的时刻! 注意!!! · 在模拟滑动时不能按照相同速度或者过快的速度滑动,需要向人滑动时一样先快后慢,这样才不容易被识别. 模拟滑动代码↓↓↓ /** * 模拟人工移动 * @param driver * @param element页面滑块 * @param dista

  • java图片滑动验证(登录验证)原理与实现方法详解

    本文实例讲述了java图片滑动验证(登录验证)原理与实现方法.分享给大家供大家参考,具体如下: 这是我简单做出的效果图,处理300X150px的校验图,并把图片发到前端,用时50毫秒左右,速度还是非常快的. 原理: 1.利用java从大图中随机抠出一张小图,并在大图上给抠出小图的位置加阴影,然后把这两张图片返回给前端: 2.前端获取图片,用户滑动小图到阴影的位置,获取小图滑动的距离,返回给java后台进行校验: 3.校验通过,返回校验通过编号: 4.前端调登录接口,把账号.密码.和校验编号传到J

  • java实现图片滑动验证(包含前端代码)

    前言 1.下面是一个效果展示: 2.先抱怨一下,在博客上面的抄袭真的非常严重,为了实现一个图片滑动验证,我搜索了挺久的资料,不过内容翻来覆去就是同样的内容,千篇一律,作者还各不相同:内容相同我就不多说了,毕竟能解决问题就行,然而恰恰相反,这些东西都没有为我实质性地解决问题.可能图片验证是一个需要前后台同时交互的功能吧,从业的人员大部分都是偏向后台或者偏向前台的,所以写出来的博客都不能完整阐述整个流程,下面是我自己实践完成的内容,记录一下,供各位参阅斧正. 注:由于使用到的控件和工具较多,有许多地

  • 使用java + selenium + OpenCV破解腾讯防水墙滑动验证码功能

    * 验证码地址:https://007.qq.com/online.html * 使用OpenCv模板匹配 * 成功率90%左右 * Java + Selenium + OpenCV 产品样例 来吧!展示! 注意!!! · 在模拟滑动时不能按照相同速度或者过快的速度滑动,需要向人滑动时一样先快后慢,这样才不容易被识别. 模拟滑动代码↓↓↓ /** * 模拟人工移动 * @param driver * @param element页面滑块 * @param distance需要移动距离 */ pu

  • Java selenium处理极验滑动验证码示例

    要爬取一个网站遇到了极验的验证码,这周都在想着怎么破解这个,网上搜了好多知乎上看到有人问了这问题,我按照这思路去大概实现了一下. 1.使用htmlunit(这种方式我没成功,模拟鼠标拖拽后轨迹没生成,可以跳过) 我用的是java,我首先先想到了用直接用htmlunit,我做了点初始化 private void initWebClient() { if (webClient != null) { return; } webClient = new WebClient(BrowserVersion.

  • java实现滑动验证解锁

    本文实例为大家分享了java实现滑动验证解锁的具体代码,供大家参考,具体内容如下 1.html: <div class="drag"> <div class="bg"></div> <div class="text" onselectstart="return false;">请拖动滑块解锁</div> <div class="dragBtn"

  • selenium+java破解极验滑动验证码的示例代码

    摘要 分析验证码素材图片混淆原理,并采用selenium模拟人拖动滑块过程,进而破解验证码. 人工验证的过程 1.打开威锋网注册页面 2.移动鼠标至小滑块,一张完整的图片会出现(如下图1) 3.点击鼠标左键,图片中间会出现一个缺块(如下图2) 4.移动小滑块正上方图案至缺块处 5.验证通过 selenium模拟验证的过程 加载威锋网注册页面 下载图片1和缺块图片2 根据两张图片的差异计算平移的距离x 模拟鼠标点击事件,点击小滑块向右移动x 验证通过 详细分析 1.打开chrome浏览器控制台,会

  • 利用Java+Selenium+OpenCV模拟实现网页滑动验证

    目录 一.需求分析 二.模拟步骤 1.使用selenium打开某音网页 2.找到小滑块以及小滑块所在的背景图 3.计算小滑块需要滑动的距离 4.按住小滑块并滑动 三.学习过程中比较棘手的问题 1.截图问题 2.返回结果与实际滑动距离相差太多,甚至无规律可循 3.openCV的下载安装 四.总结 目前很多网页都有滑动验证,目的就是防止不良爬虫扒他们网站的数据,我这次本着学习的目的使用Java和selenium学习解决滑动验证的问题,前前后后花了一周时间(抄代码),终于成功了某音的滑动验证! 效果展

  • Java + Selenium + OpenCV解决自动化测试中的滑块验证问题

    目录 1.滑块验证思路 2.使用OpenCV进行图片解析 2.1 OpenCV引入项目 2.2 实现图片解析,计算所需距离 2.3 算法解析说明 3.Selenium处理滑块滑动 4.最终效果 最近工作过程中,一个常用的被测网站突然增加了滑块验证环节,导致整个自动化项目失效了. 为了解决这个滑块验证问题,在网上查阅了一些资料后,总结并实现了解决方案,现记录如下. 1.滑块验证思路 被测对象的滑块对象长这个样子.相对而言是比较简单的一种形式,需要将左侧的拼图通过下方的滑块进行拖动,嵌入到右侧空槽中

  • python爬虫之利用selenium+opencv识别滑动验证并模拟登陆知乎功能

    滑动验证距离 分别获取验证码背景图和滑块图两张照片,然后利用opencv库,通过高斯模糊和Canny算法进行处理,然后通过matchTemplate方法进行两张图的匹配,获得滑动距离.需要注意的是,知乎验证码在进行操作的时候,需要在原有基础上再向右偏移10px距离 def get_distance(self, bg_img_path='./bg.png', slider_img_path='./slider.png'): """获取滑块移动距离""&quo

  • python+opencv+selenium自动化登录邮箱并解决滑动验证的问题

    前言 大家做自动化登录时可能都遇到过滑块验证码需要手动验证的问题,这次我们就来解决他 如下:    在我们做自动化登录时,总会遇到各种奇奇怪怪的验证码,滑块验证码就是其中最常见的一种.若我们的程序自动输入账号密码之后,还需要我们人工去滑动验证码那还能称得上是自动化吗? 那么先给大家说一下我的'解题步骤'. 1.使用selenium打开邮箱首页. 2.定位到账号密码框,键入账号密码. 3.获取验证图片,使用opencv处理返回滑块应拖动的距离. 4.创建鼠标事件,模拟拖动滑块完成验证.   需要解

  • 利用Java异常机制实现模拟借书系统

    本文介绍的是利用java语言实现一个控制台版的模拟借书系统,在开始本文的正式内容之前,我们先来了解一下Java异常机制. 什么是异常? 异常,不正常也.Exception是Exception event的缩写,因此异常是一个事件,该事件发生在程序运行时. 异常会影响程序的连续性,使程序中断.在Java中,一切皆对象,所以要定义异常,也需要使用对象.异常对象里 封装了异常类型和程序发生异常时的状态. 我们经常说的抛出异常就是创建异常对象,并提交给运行系统. 异常捕获机制与try-catch 当异常

  • 利用Java+OpenCV实现拍照功能

    由于项目需要拍照,看了好多的资料不是C语言的就是python,开始用的JavaCv但是有好多问题,所以改成了OpenCv 只能硬着上了,查了好的网上的资料,终于找到了 依赖jar包:只有一个OpenCv的jar包,可以直接从官网上下载 下面上代码 import java.awt.Graphics; import java.awt.event.MouseAdapter; import java.awt.event.MouseEvent; import java.awt.image.Buffered

  • 利用PyQt5模拟实现网页鼠标移动特效

    核心代码: from random import random from time import time from PyQt5.QtCore import QPropertyAnimation, QObject, pyqtProperty, QEasingCurve,\ Qt, QRectF, pyqtSignal from PyQt5.QtGui import QColor, QPainterPath, QPainter from PyQt5.QtWidgets import QWidget

  • 用C#+Selenium+ChromeDriver爬取网页(模拟真实的用户浏览行为)

    以下文章来源于公众号:DotNetCore实战 1.背景 Selenium是一个用于Web应用程序测试的工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.而对于爬虫来说,使用Selenium操控浏览器来爬取网上的数据那么肯定是爬虫中的杀手武器.这里,我将介绍selenium + 谷歌浏览器的一般使用. 2.需求 在平常的爬虫开发中,有时候网页是一堆js堆起来的代码,涉及很多异步计算,如果是普通的http 控制台请求,那么得到的源文件是一堆js ,需要自己在去组装数据,很费力

随机推荐