Python collections模块的使用方法

collections模块

这个模块实现了特定目标的容器,以提供Python标准内建容器 dict、list、set、tuple 的替代选择。

  • Counter:字典的子类,提供了可哈希对象的计数功能
  • defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认值
  • OrderedDict:字典的子类,保留了他们被添加的顺序
  • namedtuple:创建命名元组子类的工厂函数
  • deque:类似列表容器,实现了在两端快速添加(append)和弹出(pop)
  • ChainMap:类似字典的容器类,将多个映射集合到一个视图里面

Counter

Counter是一个dict子类,主要是用来对你访问的对象的频率进行计数。

>>> import collections
>>> # 统计字符出现的次数
... collections.Counter('hello world')
Counter({'l': 3, 'o': 2, 'h': 1, 'e': 1, ' ': 1, 'w': 1, 'r': 1, 'd': 1})
>>> # 统计单词个数
... collections.Counter('hello world hello lucy'.split())
Counter({'hello': 2, 'world': 1, 'lucy': 1})

常用方法:

  • elements():返回一个迭代器,每个元素重复计算的个数,如果一个元素的计数小于1,就会被忽略
  • most_common([n]):返回一个列表,提供n个访问频率最高的元素和计数
  • subtract([iterable-or-mapping]):从迭代对象中减去元素,输入输出可以是0或者负数
  • update([iterable-or-mapping]):从迭代对象计数元素或者从另一个 映射对象 (或计数器) 添加
>>> c = collections.Counter('hello world hello lucy'.split())
>>> c
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 获取指定对象的访问次数,也可以使用get方法
... c['hello']
2
>>> # 查看元素
... list(c.elements())
['hello', 'hello', 'world', 'lucy']
>>> c1 = collections.Counter('hello world'.split())
>>> c2 = collections.Counter('hello lucy'.split())
>>> c1
Counter({'hello': 1, 'world': 1})
>>> c2
Counter({'hello': 1, 'lucy': 1})
>>> # 追加对象,+或者c1.update(c2)
... c1+c2
Counter({'hello': 2, 'world': 1, 'lucy': 1})
>>> # 减少对象,-或者c1.subtract(c2)
... c1-c2
Counter({'world': 1})
>>> # 清除
... c.clear()
>>> c
Counter()

defaultdict

返回一个新的类似字典的对象。 defaultdict 是内置 dict 类的子类。

class collections.defaultdict([default_factory[, ...]])
>>> d = collections.defaultdict()
>>> d
defaultdict(None, {})
>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})

例子

defaultdict的一个典型用法是使用其中一种内置类型(如str、int、list或dict等)作为默认工厂,这些内置类型在没有参数调用时返回空类型。

>>> e = collections.defaultdict(str)
>>> e
defaultdict(<class 'str'>, {})
>>> e['hello']
''
>>> e
defaultdict(<class 'str'>, {'hello': ''})
>>> # 普通字典调用不存在的键时,报错
... e1 = {}
>>> e1['hello']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'hello'

使用 int 作为 default_factory

>>> fruit = collections.defaultdict(int)
>>> fruit['apple'] = 2
>>> fruit
defaultdict(<class 'int'>, {'apple': 2})
>>> fruit['banana'] # 没有对象时,返回0
0
>>> fruit
defaultdict(<class 'int'>, {'apple': 2, 'banana': 0})

使用 list 作为 default_factory

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = collections.defaultdict(list)
>>> for k,v in s:
...   d[k].append(v)
...
>>> d
defaultdict(<class 'list'>, {'yellow': [1, 3], 'blue': [2, 4], 'red': [1]})
>>> d.items()
dict_items([('yellow', [1, 3]), ('blue', [2, 4]), ('red', [1])])
>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

使用 dict 作为 default_factory

>>> nums = collections.defaultdict(dict)
>>> nums[1] = {'one':1}
>>> nums
defaultdict(<class 'dict'>, {1: {'one': 1}})
>>> nums[2]
{}
>>> nums
defaultdict(<class 'dict'>, {1: {'one': 1}, 2: {}})

使用 set 作为 default_factory

>>> types = collections.defaultdict(set)
>>> types['手机'].add('华为')
>>> types['手机'].add('小米')
>>> types['显示器'].add('AOC')
>>> types
defaultdict(<class 'set'>, {'手机': {'华为', '小米'}, '显示器': {'AOC'}})

 OrderedDict

Python字典中的键的顺序是任意的,它们不受添加的顺序的控制。

collections.OrderedDict 类提供了保留他们添加顺序的字典对象
>>> o = collections.OrderedDict()
>>> o['k1'] = 'v1'
>>> o['k3'] = 'v3'
>>> o['k2'] = 'v2'
>>> o
OrderedDict([('k1', 'v1'), ('k3', 'v3'), ('k2', 'v2')])

如果在已经存在的 key 上添加新的值,将会保留原来的 key 的位置,然后覆盖 value 值。

>>> o['k1'] = 666
>>> o
OrderedDict([('k1', 666), ('k3', 'v3'), ('k2', 'v2')])
>>> dict(o)
{'k1': 666, 'k3': 'v3', 'k2': 'v2'}

namedtuple

三种定义命名元组的方法:第一个参数是命名元组的构造器(如下的:Person1,Person2,Person3)

>>> P1 = collections.namedtuple('Person1',['name','age','height'])
>>> P2 = collections.namedtuple('Person2','name,age,height')
>>> P3 = collections.namedtuple('Person3','name age height')

实例化命名元组

>>> lucy = P1('lucy',23,180)
>>> lucy
Person1(name='lucy', age=23, height=180)
>>> jack = P2('jack',20,190)
>>> jack
Person2(name='jack', age=20, height=190)
>>> lucy.name # 直接通过 实例名.属性 来调用
'lucy'
>>> lucy.age
23

deque

collections.deque 返回一个新的双向队列对象,从左到右初始化(用方法 append()),从 iterable(迭代对象)数据创建。如果 iterable 没有指定,新队列为空。
collections.deque 队列支持线程安全,对于从两端添加(append)或者弹出(pop),复杂度O(1)。
 虽然 list 对象也支持类似操作,但是这里优化了定长操作(pop(0)、insert(0,v))的开销。
 如果 maxlen 没有指定或者是 None ,deque 可以增长到任意长度。否则,deque 就限定到指定最大长度。一旦限定长度的 deque 满了,当新项加入时,同样数量的项就从另一端弹出。

支持的方法:

  • append(x):添加x到右端
  • appendleft(x):添加x到左端
  • clear():清除所有元素,长度变为0
  • copy():创建一份浅拷贝
  • count(x):计算队列中个数等于x的元素
  • extend(iterable):在队列右侧添加iterable中的元素
  • extendleft(iterable):在队列左侧添加iterable中的元素,注:在左侧添加时,iterable参数的顺序将会反过来添加
  • index(x[,start[,stop]]):返回第 x 个元素(从 start 开始计算,在 stop 之前)。返回第一个匹配,如果没找到的话,升起 ValueError 。
  • insert(i,x):在位置 i 插入 x 。注:如果插入会导致一个限长deque超出长度 maxlen 的话,就升起一个 IndexError 。
  • pop():移除最右侧的元素
  • popleft():移除最左侧的元素
  • remove(value):移去找到的第一个 value。没有抛出ValueError
  • reverse():将deque逆序排列。返回 None 。
  • maxlen:队列的最大长度,没有限定则为None。
>>> d = collections.deque(maxlen=10)
>>> d
deque([], maxlen=10)
>>> d.extend('python')
>>> [i.upper() for i in d]
['P', 'Y', 'T', 'H', 'O', 'N']
>>> d.append('e')
>>> d.appendleft('f')
>>> d.appendleft('g')
>>> d.appendleft('h')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'e'], maxlen=10)
>>> d.appendleft('i')
>>> d
deque(['i', 'h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n'], maxlen=10)
>>> d.append('m')
>>> d
deque(['h', 'g', 'f', 'p', 'y', 't', 'h', 'o', 'n', 'm'], maxlen=10)

ChainMap

问题背景是我们有多个字典或者映射,想把它们合并成为一个单独的映射,有人说可以用update进行合并,这样做的问题就是新建了一个数据结构以致于当我们对原来的字典进行更改的时候不会同步。如果想建立一个同步的查询方法,可以使用 ChainMap

可以用来合并两个或者更多个字典,当查询的时候,从前往后依次查询。简单使用:

>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> combined1 = collections.ChainMap(d1,d2)
>>> combined2 = collections.ChainMap(d2,d1)
>>> combined1
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> combined2
ChainMap({'orange': 2, 'apple': 3, 'pike': 1}, {'apple': 1, 'banana': 2})
>>> for k,v in combined1.items():
...   print(k,v)
...
orange 2
apple 1
pike 1
banana 2
>>> for k,v in combined2.items():
...   print(k,v)
...
apple 3
banana 2
orange 2
pike 1

有一个注意点就是当对ChainMap进行修改的时候总是只会对第一个字典进行修改,如果第一个字典不存在该键,会添加。

>>> d1 = {'apple':1,'banana':2}
>>> d2 = {'orange':2,'apple':3,'pike':1}
>>> c = collections.ChainMap(d1,d2)
>>> c
ChainMap({'apple': 1, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['apple']
1
>>> c['apple'] = 2
>>> c
ChainMap({'apple': 2, 'banana': 2}, {'orange': 2, 'apple': 3, 'pike': 1})
>>> c['pike']
1
>>> c['pike'] = 3
>>> c
ChainMap({'apple': 2, 'banana': 2, 'pike': 3}, {'orange': 2, 'apple': 3, 'pike': 1})

从原理上面讲,ChainMap 实际上是把放入的字典存储在一个队列中,当进行字典的增加删除等操作只会在第一个字典上进行,当进行查找的时候会依次查找,new_child() 方法实质上是在列表的第一个元素前放入一个字典,默认是{},而 parents 是去掉了列表开头的元素

>>> a = collections.ChainMap()
>>> a['x'] = 1
>>> a
ChainMap({'x': 1})
>>> b = a.new_child()
>>> b
ChainMap({}, {'x': 1})
>>> b['x'] = 2
>>> b
ChainMap({'x': 2}, {'x': 1})
>>> b['y'] = 3
>>> b
ChainMap({'x': 2, 'y': 3}, {'x': 1})
>>> a
ChainMap({'x': 1})
>>> c = a.new_child()
>>> c
ChainMap({}, {'x': 1})
>>> c['x'] = 1
>>> c['y'] = 1
>>> c
ChainMap({'x': 1, 'y': 1}, {'x': 1})
>>> d = c.parents
>>> d
ChainMap({'x': 1})
>>> d is a
False
>>> d == a
True
>>> a = {'x':1,'z':3}
>>> b = {'y':2,'z':4}
>>> c = collections.ChainMap(a,b)
>>> c
ChainMap({'x': 1, 'z': 3}, {'y': 2, 'z': 4})
>>> c.maps
[{'x': 1, 'z': 3}, {'y': 2, 'z': 4}]
>>> c.parents
ChainMap({'y': 2, 'z': 4})
>>> c.parents.maps
[{'y': 2, 'z': 4}]
>>> c.parents.parents
ChainMap({})
>>> c.parents.parents.parents
ChainMap({})

到此这篇关于Python collections模块的使用方法的文章就介绍到这了,更多相关Python collections模块内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python collections模块实例讲解

    collections模块基本介绍 我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型: 1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类2.deque: 双端队列,可以快速的从另外一侧追加和推出对象3.Counter: 计数器,主要用来计数4.OrderedDict: 有序字典5.defaultdict: 带有默认值的字典 n

  • Python collections模块使用方法详解

    一.collections模块 1.函数namedtuple (1)作用:tuple类型,是一个可命名的tuple (2)格式:collections(列表名称,列表) (3)​返回值:一个含有列表的类 (4)例子​: import collections # help(collections.namedtuple) Point = collections.namedtuple("Point",['x','y']) p = Point(15,45) print(p.x+p.y) pri

  • Python中collections模块的基本使用教程

    前言 之前认识了python基本的数据类型和数据结构,现在认识一个高级的:Collections,一个模块主要用来干嘛,有哪些类可以使用,看__init__.py就知道 '''This module implements specialized container datatypes providing alternatives to Python's general purpose built-in containers, dict, list, set, and tuple. * named

  • Python中Collections模块的Counter容器类使用教程

    1.collections模块 collections模块自Python 2.4版本开始被引入,包含了dict.set.list.tuple以外的一些特殊的容器类型,分别是: OrderedDict类:排序字典,是字典的子类.引入自2.7. namedtuple()函数:命名元组,是一个工厂函数.引入自2.6. Counter类:为hashable对象计数,是字典的子类.引入自2.7. deque:双向队列.引入自2.4. defaultdict:使用工厂函数创建字典,使不用考虑缺失的字典键.引

  • python的常用模块之collections模块详解

    认识模块 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别:   1 使用python编写的代码(.py文件)   2 已被编译为共享库或DLL的C或C++扩展   3 包好一组模块的包   4 使用C编写并链接到python解释器的内置模块 为何要使用模块? 如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,

  • Python collections模块的使用方法

    collections模块 这个模块实现了特定目标的容器,以提供Python标准内建容器 dict.list.set.tuple 的替代选择. Counter:字典的子类,提供了可哈希对象的计数功能 defaultdict:字典的子类,提供了一个工厂函数,为字典查询提供了默认值 OrderedDict:字典的子类,保留了他们被添加的顺序 namedtuple:创建命名元组子类的工厂函数 deque:类似列表容器,实现了在两端快速添加(append)和弹出(pop) ChainMap:类似字典的容

  • Python collections模块的使用技巧

    一般来讲,python的collections是用于存储数据集合(比如列表list, 字典dict, 元组tuple和集合set)的容器.这些容器内置在Python中,可以直接使用.该collections模块提供了额外的,高性能的数据类型,可以增强你的代码,使事情变得更清洁,更容易. 让我们看一看关于集合模块最受欢迎的数据类型以及如何使用它们的教程! Counter Counter()是字典对象的子类.Counter()可接收一个可迭代遍历的对象(例如字符串.列表或元组)作为参数,并返回计数器

  • python添加模块搜索路径方法

    1.函数添加 import sys sys.path sys.path.append("c:\\") 2.修改pythonpath(试不通) windows:PYTHONPATH 3.增加.pth文件(可以) site-packages或者python安装目录添加 xx.pth,文件内容为模块目录. linux(ubuntu)    /usr/local/lib/python2.7/dist-packages linux(redhat)    /usr/lib/python2.7/si

  • Python 常用模块 re 使用方法详解

    一.re模块的查找方法: 1.findall   匹配所有每一项都是列表中的一个元素 import re ret = re.findall('\d+','asd鲁班七号21313') # 正则表达式,待匹配的字符串,flag # ret = re.findall('\d','asd鲁班七号21313') # 正则表达式,待匹配的字符串,flag # print(ret) 2.search 只匹配从左到右的第一个,等到的不是直接的结果,而是一个变量,通过这个变量的group方法来获取结果 impo

  • python日志模块logbook使用方法

    python自带了日志模块logging,可以用来记录程序运行过程中的日志信息.同时python还有logbook模块用来取代logging模块,在很多的项目中logbook模块使用也是比较的多,因此本文介绍一下python logbook模块的使用方法. 1,安装 pip install logbook 官方的使用文档,这里 2,使用方法如下: 文件 logconf.py 初始化日志以及设置日志格式等参数: import sys import os import logbook import

  • python随机模块random使用方法详解

    random随机模块包括返回随机数的函数,可以用于模拟或者任何产生随机输出的程序. 一.random模块常用函数介绍 random.random() - 生成一个从0.0(包含)到 1.0(不包含)之间的随机浮点数: random.uniform(a, b) - 生成一个范围为 a≤N≤b 的随机数,随机数类型是浮点数: random.randint(a, b) - 生成一个范围为 a≤N≤b 的随机数,随机数的类型是整形,注意与random.uniform(a, b)区别: random.ra

  • Python requests模块基础使用方法实例及高级应用(自动登陆,抓取网页源码)实例详解

    1.Python requests模块说明 requests是使用Apache2 licensed 许可证的HTTP库. 用python编写. 比urllib2模块更简洁. Request支持HTTP连接保持和连接池,支持使用cookie保持会话,支持文件上传,支持自动响应内容的编码,支持国际化的URL和POST数据自动编码. 在python内置模块的基础上进行了高度的封装,从而使得python进行网络请求时,变得人性化,使用Requests可以轻而易举的完成浏览器可有的任何操作. 现代,国际化

  • python speech模块的使用方法

    在python中我们可以使用speech模块让计算机进行语音输出,我们需要使用如下代码安装该模块.对于如何在终端中安装python相应模块, Pycharm编译器可以使用Win + R进入运行界面,输入cmd并点击确定进入终端 Anaconda编译器可以打开Anaconda Powershell Prompt (anaconda),使用conda activate (虚拟环境名)进入终端,接下来在终端中使用如下安装命令即可: pip install speech 然而因为speech模块最早是在

  • python collections模块的使用

    collections模块 collections模块:提供一些python八大类型以外的数据类型 python默认八大数据类型: - 整型 - 浮点型 - 字符串 - 字典 - 列表 - 元组 - 集合 - 布尔类型 1.具名元组 具名元组只是一个名字 应用场景: ① 坐标 # 应用:坐标 from collections import namedtuple # 将"坐标"变成"对象"的名字 # 传入可迭代对象必须是有序的 point = namedtuple(&

随机推荐