Python为人脸照片添加口罩实战
目录
- 效果展示
- 为人脸照片添加口罩代码
- 掩膜生成代码
效果展示
数据集展示
数据集来源:使用了开源数据集FaceMask_CelebA
部分人脸数据集:
口罩样本数据集:
为人脸照片添加口罩代码
这部分有个库face_recognition需要安装,如果之前没有用过的小伙伴可能得费点功夫。
Face Recognition 库主要封装了dlib这一 C++ 图形库,通过 Python 语言将它封装为一个非常简单就可以实现人脸识别的 API 库,屏蔽了人脸识别的算法细节,大大降低了人脸识别功能的开发难度。
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : 2014Vee import os import numpy as np from PIL import Image, ImageFile __version__ = '0.3.0' IMAGE_DIR = os.path.dirname('E:/play/FaceMask_CelebA-master/facemask_image/') WHITE_IMAGE_PATH = os.path.join(IMAGE_DIR, 'front_14.png') BLUE_IMAGE_PATH = os.path.join(IMAGE_DIR, 'front_14.png') SAVE_PATH = os.path.dirname('E:/play/FaceMask_CelebA-master/save/synthesis/') SAVE_PATH2 = os.path.dirname('E:/play/FaceMask_CelebA-master/save/masks/') class FaceMasker: KEY_FACIAL_FEATURES = ('nose_bridge', 'chin') def __init__(self, face_path, mask_path, white_mask_path, save_path, save_path2, model='hog'): self.face_path = face_path self.mask_path = mask_path self.save_path = save_path self.save_path2 = save_path2 self.white_mask_path = white_mask_path self.model = model self._face_img: ImageFile = None self._black_face_img = None self._mask_img: ImageFile = None self._white_mask_img = None def mask(self): import face_recognition face_image_np = face_recognition.load_image_file(self.face_path) face_locations = face_recognition.face_locations(face_image_np, model=self.model) face_landmarks = face_recognition.face_landmarks(face_image_np, face_locations) self._face_img = Image.fromarray(face_image_np) self._mask_img = Image.open(self.mask_path) self._white_mask_img = Image.open(self.white_mask_path) self._black_face_img = Image.new('RGB', self._face_img.size, 0) found_face = False for face_landmark in face_landmarks: # check whether facial features meet requirement skip = False for facial_feature in self.KEY_FACIAL_FEATURES: if facial_feature not in face_landmark: skip = True break if skip: continue # mask face found_face = True self._mask_face(face_landmark) if found_face: # save self._save() else: print('Found no face.') def _mask_face(self, face_landmark: dict): nose_bridge = face_landmark['nose_bridge'] nose_point = nose_bridge[len(nose_bridge) * 1 // 4] nose_v = np.array(nose_point) chin = face_landmark['chin'] chin_len = len(chin) chin_bottom_point = chin[chin_len // 2] chin_bottom_v = np.array(chin_bottom_point) chin_left_point = chin[chin_len // 8] chin_right_point = chin[chin_len * 7 // 8] # split mask and resize width = self._mask_img.width height = self._mask_img.height width_ratio = 1.2 new_height = int(np.linalg.norm(nose_v - chin_bottom_v)) # left mask_left_img = self._mask_img.crop((0, 0, width // 2, height)) mask_left_width = self.get_distance_from_point_to_line(chin_left_point, nose_point, chin_bottom_point) mask_left_width = int(mask_left_width * width_ratio) mask_left_img = mask_left_img.resize((mask_left_width, new_height)) # right mask_right_img = self._mask_img.crop((width // 2, 0, width, height)) mask_right_width = self.get_distance_from_point_to_line(chin_right_point, nose_point, chin_bottom_point) mask_right_width = int(mask_right_width * width_ratio) mask_right_img = mask_right_img.resize((mask_right_width, new_height)) # merge mask size = (mask_left_img.width + mask_right_img.width, new_height) mask_img = Image.new('RGBA', size) mask_img.paste(mask_left_img, (0, 0), mask_left_img) mask_img.paste(mask_right_img, (mask_left_img.width, 0), mask_right_img) # rotate mask angle = np.arctan2(chin_bottom_point[1] - nose_point[1], chin_bottom_point[0] - nose_point[0]) rotated_mask_img = mask_img.rotate(angle, expand=True) # calculate mask location center_x = (nose_point[0] + chin_bottom_point[0]) // 2 center_y = (nose_point[1] + chin_bottom_point[1]) // 2 offset = mask_img.width // 2 - mask_left_img.width radian = angle * np.pi / 180 box_x = center_x + int(offset * np.cos(radian)) - rotated_mask_img.width // 2 box_y = center_y + int(offset * np.sin(radian)) - rotated_mask_img.height // 2 # add mask self._face_img.paste(mask_img, (box_x, box_y), mask_img) # split mask and resize width = self._white_mask_img.width height = self._white_mask_img.height width_ratio = 1.2 new_height = int(np.linalg.norm(nose_v - chin_bottom_v)) # left mask_left_img = self._white_mask_img.crop((0, 0, width // 2, height)) mask_left_width = self.get_distance_from_point_to_line(chin_left_point, nose_point, chin_bottom_point) mask_left_width = int(mask_left_width * width_ratio) mask_left_img = mask_left_img.resize((mask_left_width, new_height)) # right mask_right_img = self._white_mask_img.crop((width // 2, 0, width, height)) mask_right_width = self.get_distance_from_point_to_line(chin_right_point, nose_point, chin_bottom_point) mask_right_width = int(mask_right_width * width_ratio) mask_right_img = mask_right_img.resize((mask_right_width, new_height)) # merge mask size = (mask_left_img.width + mask_right_img.width, new_height) mask_img = Image.new('RGBA', size) mask_img.paste(mask_left_img, (0, 0), mask_left_img) mask_img.paste(mask_right_img, (mask_left_img.width, 0), mask_right_img) # rotate mask angle = np.arctan2(chin_bottom_point[1] - nose_point[1], chin_bottom_point[0] - nose_point[0]) rotated_mask_img = mask_img.rotate(angle, expand=True) # calculate mask location center_x = (nose_point[0] + chin_bottom_point[0]) // 2 center_y = (nose_point[1] + chin_bottom_point[1]) // 2 offset = mask_img.width // 2 - mask_left_img.width radian = angle * np.pi / 180 box_x = center_x + int(offset * np.cos(radian)) - rotated_mask_img.width // 2 box_y = center_y + int(offset * np.sin(radian)) - rotated_mask_img.height // 2 # add mask self._black_face_img.paste(mask_img, (box_x, box_y), mask_img) def _save(self): path_splits = os.path.splitext(self.face_path) # new_face_path = self.save_path + '/' + os.path.basename(self.face_path) + '-with-mask' + path_splits[1] # new_face_path2 = self.save_path2 + '/' + os.path.basename(self.face_path) + '-binary' + path_splits[1] new_face_path = self.save_path + '/' + os.path.basename(self.face_path) + '-with-mask' + path_splits[1] new_face_path2 = self.save_path2 + '/' + os.path.basename(self.face_path) + '-binary' + path_splits[1] self._face_img.save(new_face_path) self._black_face_img.save(new_face_path2) # print(f'Save to {new_face_path}') @staticmethod def get_distance_from_point_to_line(point, line_point1, line_point2): distance = np.abs((line_point2[1] - line_point1[1]) * point[0] + (line_point1[0] - line_point2[0]) * point[1] + (line_point2[0] - line_point1[0]) * line_point1[1] + (line_point1[1] - line_point2[1]) * line_point1[0]) / \ np.sqrt((line_point2[1] - line_point1[1]) * (line_point2[1] - line_point1[1]) + (line_point1[0] - line_point2[0]) * (line_point1[0] - line_point2[0])) return int(distance) # FaceMasker("/home/aistudio/data/人脸.png", WHITE_IMAGE_PATH, True, 'hog').mask() from pathlib import Path images = Path("E:/play/FaceMask_CelebA-master/bbox_align_celeba").glob("*") cnt = 0 for image in images: if cnt < 1: cnt += 1 continue FaceMasker(image, BLUE_IMAGE_PATH, WHITE_IMAGE_PATH, SAVE_PATH, SAVE_PATH2, 'hog').mask() cnt += 1 print(f"正在处理第{cnt}张图片,还有{99 - cnt}张图片")
掩膜生成代码
这部分其实就是对使用的口罩样本的二值化,因为后续要相关模型会用到
import os from PIL import Image # 源目录 # MyPath = 'E:/play/FaceMask_CelebA-master/facemask_image/' MyPath = 'E:/play/FaceMask_CelebA-master/save/masks/' # 输出目录 OutPath = 'E:/play/FaceMask_CelebA-master/save/Binarization/' def processImage(filesoure, destsoure, name, imgtype): ''' filesoure是存放待转换图片的目录 destsoure是存在输出转换后图片的目录 name是文件名 imgtype是文件类型 ''' imgtype = 'bmp' if imgtype == '.bmp' else 'png' # 打开图片 im = Image.open(filesoure + name) # ============================================================================= # #缩放比例 # rate =max(im.size[0]/640.0 if im.size[0] > 60 else 0, im.size[1]/1136.0 if im.size[1] > 1136 else 0) # if rate: # im.thumbnail((im.size[0]/rate, im.size[1]/rate)) # ============================================================================= img = im.convert("RGBA") pixdata = img.load() # 二值化 for y in range(img.size[1]): for x in range(img.size[0]): if pixdata[x, y][0] < 90: pixdata[x, y] = (0, 0, 0, 255) for y in range(img.size[1]): for x in range(img.size[0]): if pixdata[x, y][1] < 136: pixdata[x, y] = (0, 0, 0, 255) for y in range(img.size[1]): for x in range(img.size[0]): if pixdata[x, y][2] > 0: pixdata[x, y] = (255, 255, 255, 255) img.save(destsoure + name, imgtype) def run(): # 切换到源目录,遍历源目录下所有图片 os.chdir(MyPath) for i in os.listdir(os.getcwd()): # 检查后缀 postfix = os.path.splitext(i)[1] name = os.path.splitext(i)[0] name2 = name.split('.') if name2[1] == 'jpg-binary' or name2[1] == 'png-binary': processImage(MyPath, OutPath, i, postfix) if __name__ == '__main__': run()
到此这篇关于Python为人脸照片添加口罩实战的文章就介绍到这了,更多相关Python人脸照片添加口罩内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)