pytorch 如何使用amp进行混合精度训练

简介

AMP:Automatic mixed precision,自动混合精度,可以在神经网络推理过程中,针对不同的层,采用不同的数据精度进行计算,从而实现节省显存和加快速度的目的。

在Pytorch 1.5版本及以前,通过NVIDIA提供的apex库可以实现amp功能。但是在使用过程中会伴随着一些版本兼容和奇怪的报错问题。

从1.6版本开始,Pytorch原生支持自动混合精度训练,并已进入稳定阶段,AMP 训练能在 Tensor Core GPU 上实现更高的性能并节省多达 50% 的内存。

环境

Python 3.8

Pytorch 1.7.1

CUDA 11 + cudnn 8

NVIDIA GeFore RTX 3070

ps:后续使用移动端的3070,或者3080结合我目前训练的分类网络来测试实际效果

原理

关于低精度计算

当前的深度学习框架大都采用的都是FP32来进行权重参数的存储,比如Python float的类型为双精度浮点数 FP64,PyTorch Tensor的默认类型为单精度浮点数FP32。

随着模型越来越大,加速训练模型的需求就产生了。在深度学习模型中使用FP32主要存在几个问题,第一模型尺寸大,训练的时候对显卡的显存要求高;第二模型训练速度慢;第三模型推理速度慢。

其解决方案就是使用低精度计算对模型进行优化。

推理过程中的模型优化目前比较成熟的方案就是FP16量化和INT8量化,NVIDIA TensorRT等框架就可以支持,这里不再赘述。训练方面的方案就是混合精度训练,它的基本思想很简单: 精度减半(FP32→ FP16) ,训练时间减半。

与单精度浮点数float32(32bit,4个字节)相比,半精度浮点数float16仅有16bit,2个字节组成。

可以很明显的看到,使用FP16可以解决或者缓解上面FP32的两个问题:显存占用更少:通用的模型FP16占用的内存只需原来的一半,训练的时候可以使用更大的batchsize。

计算速度更快:有论文指出半精度的计算吞吐量可以是单精度的 2-8 倍。

从上到下依次为 fp16、fp32 、fp64

当前很多NVIDIA GPU搭载了专门为快速FP16矩阵运算设计的特殊用途Tensor Core,比如Tesla P100,Tesla V100、Tesla A100、GTX 20XX 和RTX 30XX等。

Tensor Core是一种矩阵乘累加的计算单元,每个Tensor Core每个时钟执行64个浮点混合精度操作(FP16矩阵相乘和FP32累加),英伟达宣称使用Tensor Core进行矩阵运算可以轻易的提速,同时降低一半的显存访问和存储。

随着Tensor Core的普及FP16计算也一步步走向成熟,低精度计算也是未来深度学习的一个重要趋势。

Tensor Core 的 4x4x4 矩阵乘法与累加

Volta GV100 Tensor Core 流程图

自动混合精度训练

不同于在推理过程中直接削减权重精度,在模型训练的过程中,直接使用半精度进行计算会导致的两个问题的处理:舍入误差(Rounding Error)和溢出错误(Grad Overflow / Underflow)。

舍入误差: float16的最大舍入误差约为 (~2 ^-10 ),比float32的最大舍入误差(~2 ^-23) 要大不少。 对足够小的浮点数执行的任何操作都会将该值四舍五入到零,在反向传播中很多甚至大多数梯度更新值都非常小,但不为零。 在反向传播中舍入误差累积可以把这些数字变成0或者 nan, 这会导致不准确的梯度更新,影响网络的收敛。

溢出错误: 由于float16的有效的动态范围约为 ( 5.96×10^-8 ~ 6.55×10^4),比单精度的float32(1.4x10^-45 ~ 1.7x10^38)要狭窄很多,精度下降(小数点后16相比较小数点后8位要精确的多)会导致得到的值大于或者小于fp16的有效动态范围,也就是上溢出或者下溢出。

在深度学习中,由于激活函数的的梯度往往要比权重梯度小,更易出现下溢出的情况。2018年ICLR论文 Mixed Precision Training 中提到,简单的在每个地方使用FP16会损失掉梯度更新小于2^-24的值——大约占他们的示例网络所有梯度更新的5%。

解决方案就是使用混合精度训练(Mixed Precision)和损失缩放(Loss Scaling):

1、混合精度训练:

混合精度训练是一种通过在FP16上执行尽可能多的操作来大幅度减少神经网络训练时间的技术,在像线性层或是卷积操作上,FP16运算较快,但像Reduction运算又需要 FP32的动态范围。通过混合精度训练的方式,便可以在部分运算操作使用FP16,另一部分则使用 FP32,混合精度功能会尝试为每个运算使用相匹配的数据类型,在内存中用FP16做储存和乘法从而加速计算,用FP32做累加避免舍入误差。这样在权重更新的时候就不会出现舍入误差导致更新失败,混合精度训练的策略有效地缓解了舍入误差的问题。

2、损失缩放:

即使用了混合精度训练,还是会存在无法收敛的情况,原因是激活梯度的值太小,造成了下溢出。损失缩放是指在执行反向传播之前,将损失函数的输出乘以某个标量数(论文建议从8开始)。 乘性增加的损失值产生乘性增加的梯度更新值,提升许多梯度更新值到超过FP16的安全阈值2^-24。 只要确保在应用梯度更新之前撤消缩放,并且不要选择一个太大的缩放以至于产生inf权重更新(上溢出) ,从而导致网络向相反的方向发散。

使用Pytorch AMP

Pytorch原生的amp模式使用起来相当简单,只需要从torch.cuda.amp导入GradScaler和 autocast这两个函数即可。torch.cuda.amp的名字意味着这个功能只能在cuda上使用,事实上,这个功能正是NVIDIA的开发人员贡献到PyTorch项目中的。

Pytorch在amp模式下维护两个权重矩阵的副本,一个主副本用 FP32,一个半精度副本用 FP16。 梯度更新使用FP16矩阵计算,但更新于 FP32矩阵。 这使得应用梯度更新更加安全。

autocast上下文管理器实现了 FP32到FP16的转换,它会自动判别哪些层可以进行FP16哪些层不可以。 GradScaler对梯度更新计算(检查是否溢出)和优化器(将丢弃的batches转换为 no-op)进行控制,通过放大loss的值来防止梯度的溢出。

在训练中的具体使用方法如下所示:

def train():
    batch_size = 8
    epochs = 10
    lr = 1e-3
    size = 256
    num_class = 35
    use_amp = True

    device = 'cuda' if torch.cuda.is_available() else 'cpu'

    print('torch version: {}'.format(torch.__version__))
    print('amp:           {}'.format(use_amp))
    print('device:        {}'.format(device))
    print('epochs:        {}'.format(epochs))
    print('learn rate:    {}'.format(lr))
    print('batch size:    {}'.format(batch_size))

    net = ERFNet(num_classes=num_class).to(device)

    train_data = CityScapesDataset('D:\\dataset\\cityscapes',
                                   'D:\\dataset\\cityscapes\\trainImages.txt',
                                   'D:\\dataset\\cityscapes\\trainLabels.txt',
                                   size, num_class)
    val_data = CityScapesDataset('D:\\dataset\\cityscapes',
                                 'D:\\dataset\\cityscapes\\valImages.txt',
                                 'D:\\dataset\\cityscapes\\valLabels.txt',
                                 size, num_class)

    train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=False, num_workers=8)
    val_dataloader = DataLoader(val_data, batch_size=batch_size, shuffle=False, num_workers=4)

    opt = torch.optim.Adam(net.parameters(), lr=lr)
    criterion = torch.nn.CrossEntropyLoss(ignore_index=255)

    if use_amp:
        scaler = torch.cuda.amp.GradScaler()

    writer = SummaryWriter("summary")

    train_loss = AverageMeter()
    val_acc = AverageMeter()
    val_miou = AverageMeter()

    for epoch in range(0, epochs):
        train_loss.reset()
        val_acc.reset()
        val_miou.reset()

        with tqdm(total=train_data.__len__(), unit='img', desc="Epoch {}/{}".format(epoch + 1, epochs)) as pbar:
            # train
            net.train()
            for img, mask in train_dataloader:
                img = img.to(device)
                mask = mask.to(device)
                n = img.size()[0]

                opt.zero_grad()

                if use_amp:
                    with torch.cuda.amp.autocast():
                        output = net(img)
                        loss = criterion(output, mask)

                    scaler.scale(loss).backward()
                    scaler.step(opt)
                    scaler.update()
                else:
                    output = net(img)
                    loss = criterion(output, mask)
                    loss.backward()
                    opt.step()

                train_loss.update(loss.item(), n)

                pbar.set_postfix(**{"loss": train_loss.avg})
                pbar.update(img.size()[0])

            writer.add_scalar('train_loss', train_loss.avg, epoch)
            # eval
            net.eval()
            for img, mask in val_dataloader:
                img = img.to(device)
                mask = mask
                n = img.size()[0]

                output = net(img)

                pred_mask = torch.softmax(output, dim=1)
                pred_mask = pred_mask.detach().cpu().numpy()
                pred_mask = np.argmax(pred_mask, axis=1)
                true_mask = mask.numpy()
                acc, acc_cls, mean_iu, fwavacc = evaluate(pred_mask, true_mask, num_class)

                val_acc.update(acc)
                val_miou.update(mean_iu)

            writer.add_scalar('val_acc', val_acc.avg, epoch)
            writer.add_scalar('val_miou', val_miou.avg, epoch)

            pbar.set_postfix(**{"loss": train_loss.avg, "val_acc": val_acc.avg, "val_miou": val_miou.avg})

实验

硬件使用NVIDIA Geforce RTX 3070作为测试卡,这块卡有184个Tensor Core,能比较好的支持amp模式。

模型使用ERFNet分割模型作为基准,cityscapes作为测试数据,10个epoch下的测试效果如下所示:

在模型的训练性能方面,amp模式下的平均训练时间并没有明显节省,甚至还略低于正常模式。

显存的占用大约节省了25%,对于需要大量显存的模型来说这个提升还是相当可观的。

理论上训练速度应该也是有提升的,到Pytorch的GitHub issue里翻了一下,好像30系显卡会存在速度提不上来的问题,不太清楚是驱动支持不到位还是软件适配不到位。

Metrics time memory
AMP 66.72s 2.5G
NO_AMP 65.64s 3.3G

amp

no_amp

在模型的精度方面,在不进行数据shuffle的情况下统计了10个epoch下两种模式的train_loss和val_acc,可以看出不管是训练还是推理,amp模式并没有带来明显的精度损失。

cmp

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系

    以下内容都是针对Pytorch 1.0-1.1介绍. 很多文章都是从Dataset等对象自下往上进行介绍,但是对于初学者而言,其实这并不好理解,因为有的时候会不自觉地陷入到一些细枝末节中去,而不能把握重点,所以本文将会自上而下地对Pytorch数据读取方法进行介绍. 自上而下理解三者关系 首先我们看一下DataLoader.next的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据). class DataLoader(obje

  • pytorch sampler对数据进行采样的实现

    PyTorch中还单独提供了一个sampler模块,用来对数据进行采样.常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动调用这个采样器,实现打乱数据.默认的是采用SequentialSampler,它会按顺序一个一个进行采样.这里介绍另外一个很有用的采样方法: WeightedRandomSampler,它会根据每个样本的权重选取数据,在样本比例不均衡的问题中,可用它来进行重采样. 构建WeightedRandomSampler时

  • 在Pytorch中使用样本权重(sample_weight)的正确方法

    step: 1.将标签转换为one-hot形式. 2.将每一个one-hot标签中的1改为预设样本权重的值 即可在Pytorch中使用样本权重. eg: 对于单个样本:loss = - Q * log(P),如下: P = [0.1,0.2,0.4,0.3] Q = [0,0,1,0] loss = -Q * np.log(P) 增加样本权重则为loss = - Q * log(P) *sample_weight P = [0.1,0.2,0.4,0.3] Q = [0,0,sample_wei

  • pytorch随机采样操作SubsetRandomSampler()

    这篇文章记录一个采样器都随机地从原始的数据集中抽样数据.抽样数据采用permutation. 生成任意一个下标重排,从而利用下标来提取dataset中的数据的方法 需要的库 import torch 使用方法 这里以MNIST举例 train_dataset = dsets.MNIST(root='./data', #文件存放路径 train=True, #提取训练集 transform=transforms.ToTensor(), #将图像转化为Tensor download=True) sa

  • pytorch 如何使用amp进行混合精度训练

    简介 AMP:Automatic mixed precision,自动混合精度,可以在神经网络推理过程中,针对不同的层,采用不同的数据精度进行计算,从而实现节省显存和加快速度的目的. 在Pytorch 1.5版本及以前,通过NVIDIA提供的apex库可以实现amp功能.但是在使用过程中会伴随着一些版本兼容和奇怪的报错问题. 从1.6版本开始,Pytorch原生支持自动混合精度训练,并已进入稳定阶段,AMP 训练能在 Tensor Core GPU 上实现更高的性能并节省多达 50% 的内存.

  • 聊聊基于pytorch实现Resnet对本地数据集的训练问题

    目录 1.dataset.py(先看代码的总体流程再看介绍) 2.network.py 3.train.py 4.结果与总结 本文是使用pycharm下的pytorch框架编写一个训练本地数据集的Resnet深度学习模型,其一共有两百行代码左右,分成mian.py.network.py.dataset.py以及train.py文件,功能是对本地的数据集进行分类.本文介绍逻辑是总分形式,即首先对总流程进行一个概括,然后分别介绍每个流程中的实现过程(代码+流程图+文字的介绍). 对于整个项目的流程首

  • PyTorch 迁移学习实践(几分钟即可训练好自己的模型)

    前言 如果你认为深度学习非常的吃GPU,或者说非常的耗时间,训练一个模型要非常久,但是你如果了解了迁移学习那你的模型可能只需要几分钟,而且准确率不比你自己训练的模型准确率低,本节我们将会介绍两种方法来实现迁移学习 迁移学习方法介绍 微调网络的方法实现迁移学习,更改最后一层全连接,并且微调训练网络 将模型看成特征提取器,如果一个模型的预训练模型非常的好,那完全就把前面的层看成特征提取器,冻结所有层并且更改最后一层,只训练最后一层,这样我们只训练了最后一层,训练会非常的快速 迁移基本步骤 数据的准备

  • 解决Pytorch半精度浮点型网络训练的问题

    用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3.对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常奇怪,但是Adam算法对于全精度数据类型却没有这个问题. 另外,SGD算法对于半精度和全精度计算均没有问题. 还有一个问题是不知道是不是网络

  • 加速 PyTorch 模型训练的 9 个技巧(收藏)

    目录 Pytorch-Lightning 1.DataLoaders 2.DataLoaders中的workers的数量 3.Batchsize 4.梯度累加 5.保留的计算图 6.单个GPU训练 7.16-bit精度 8.移动到多个GPUs中 9.多节点GPU训练 10.福利!在单个节点上多GPU更快的训练 对模型加速的思考 让我们面对现实吧,你的模型可能还停留在石器时代.我敢打赌你仍然使用32位精度或GASP甚至只在一个GPU上训练. 我明白,网上都是各种神经网络加速指南,但是一个check

  • PyTorch中apex安装方式和避免踩坑

    目录 1.apex 2.安装步骤 3.虽然就简单三行命令,但是仍有很多“坑”存在 背景:这个库的安装不是像其他的一样的直接使用 pip install XXX的形式,而是使用原始的Git方式 1.apex 这是NVIDIA开发的基于PyTorch的混合精度训练加速神器,能够增加运算速度,并且减少显存的占用 2.安装步骤 git clone https://github.com/NVIDIA/apex.git cd apex pip install -v --no-cache-dir --glob

  • AMP Tensor Cores节省内存PyTorch模型详解

    目录 导读 什么是Tensor Cores? 那么,我们如何使用Tensor Cores? 使用PyTorch进行混合精度训练: 基准测试 导读 只需要添加几行代码,就可以得到更快速,更省显存的PyTorch模型. 你知道吗,在1986年Geoffrey Hinton就在Nature论文中给出了反向传播算法? 此外,卷积网络最早是由Yann le cun在1998年提出的,用于数字分类,他使用了一个卷积层.但是直到2012年晚些时候,Alexnet才通过使用多个卷积层来实现最先进的imagene

  • pytorch fine-tune 预训练的模型操作

    之一: torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易.本文主要介绍如何 fine-tune torchvision 中预训练好的模型. 安装 pip install torchvision 如何 fine-tune 以 resnet18 为例: from torchvision import models from torch import nn from torch import optim resnet_model = models.resne

  • PyTorch 1.0 正式版已经发布了

    PyTorch 1.0 同时面向产品化 AI 和突破性研究的发展,「我们在 PyTorch1.0 发布前解决了几大问题,包括可重用.性能.编程语言和可扩展性.」Facebook 人工智能副总裁 Jerome Pesenti 曾在PyTorch 开发者大会上表示. 随着 PyTorch 生态系统及社区中有趣新项目及面向开发者的教育资源不断增加,今天 Facebook 在 NeurIPS 大会上发布了 PyTorch 1.0 稳定版.该版本具备生产导向的功能,同时还可以获得主流云平台的支持. 现在,

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

随机推荐