Python机器学习之KNN近邻算法

一、KNN概述

简单来说,K-近邻算法采用测量不同特征值之间的距离方法进行分类

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称2型

工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系(训练集)。输入没有标签的新数据之后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签(测试集)。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处。(通常k不大于20)

二、使用Python导入数据

我们先写入一段代码

from numpy import *		# 导入numpy模块
import operator		# 导入operator模块
def createDataSet():		# 创建数据集函数
	# 构建一个数组存放特征值
    group = array(
        [[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]
    )
    # 构建一个数组存放目标值
    labels = ['A', 'A', 'B', 'B']
    return group, labels

此处稍微介绍一下numpy这个包吧

三、numpy.array()

NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型、通过一个正整数元组索引的元素表格(通常是元素是数字)。
在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩
线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。

四、实施KNN分类算法

依照KNN算法,我们依次来

先准备好四个需要的数据

  • inX:用于分类的输入向量inX
  • dataSet:输入的训练样本集dataSet
  • labels:标签向量labels(元素数目和矩阵dataSet的行数相同)
  • k:选择最近邻居的数目

五、计算已知类别数据集中的点与当前点之间的距离

使用欧式距离:

六、完整代码

# 返回矩阵的行数
dataSetSize = dataSet.shape[0]
# 列数不变,行数变成dataSetSize列
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
sqDiffMat = diffMat ** 2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5

第一行

# 返回矩阵的行数
dataSetSize = dataSet.shape[0]
# 以第一步的数据为例
answer:4		# 4行

第二行

inX = [1. , 0.]
# 列数不变,行数变成dataSetSize列
diffMat = tile(inX, (dataSetSize, 1)) - dataSet

# tile(inX, (dataSetSize, 1))
inX = [
	[1. , 0.],
	[1. , 0.],
	[1. , 0.],
	[1. , 0.]
]
# inX - dataSet两个矩阵相减(行列相等相加相减才有意义)
dataSet = [
		[1. , 1.1],
        [1. , 1. ],
        [0. , 0. ],
        [0. , 0.1]
]
diffMat = [
	[0. , -1.1],
	[0. , -1.],
	[1. , 0.],
	[1. , -0.1]
]

第三行

# 求平方差
sqDiffMat = diffMat * 2

第四行

# 计算矩阵中每一行元素之和
# 此时会形成一个多行1列的矩阵
sqDistances = sqDiffMat.sum(axis=1)

第五行

# 开根号
distances = sqDistances**0.5

按照距离递增次序排序

# 对数组进行排序
sortedDistIndicies = distances.argsort()

选择与当前点距离最小的k个点

classCount = {}		# 新建一个字典
# 确定前k个距离最小元素所在的主要分类
for i in range(k):
	# voteIlabel的取值是labels中sortedDistIndicies[i]的位置
	voteIlabel = labels[sortedDistIndicies[i]]
	classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1

确定前k个点所在类别的出现概率

# 排序
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)

###11# 返回前k个点出现频率最高的类别作为当前点的预测分类

return sortedClassCount[0][0]

刚刚试一试C++的版本…小心,救命

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
int sum_vector(std::vector<int>& v) {
	int sum = 0;
	for (int i = 0; i < v.size(); ++i) {
		sum = v[i] + sum;
	}
	return sum;
}
int knn(int k) {
	using std::cout;
	using std::endl;
	using std::vector;
	vector<vector<int>> x;
	vector<int> x_sample = {2, 3, 4};
	for (int i = 0; i < 4; ++i) {
		x.push_back(x_sample);
	}
	vector<int> y = {1, 1, 1, 1};
	int dataSetSize = x.size();		

	vector<int> x_test = {4, 3, 4};
	vector<vector<int>> x_test_matrix;
	for (int i = 0; i < dataSetSize; ++i) {
		x_test_matrix.push_back(x_test);
	}
	vector<int> v_total;
	for (int i = 0; i < dataSetSize; ++i) {
		for (int j = 0; j < x_test_matrix[i].size(); ++j) {
			x_test_matrix[i][j] = x_test_matrix[i][j] - x[i][j];
			x_test_matrix[i][j] = x_test_matrix[i][j] * 2;
		}
		int sum_vec = sum_vector(x_test_matrix[i]);
		v_total.push_back(sqrt(sum_vec));
	}
	sort(v_total.begin(), v_total.end());
	std::map<int, int> mp;
	for (int i = 0; i < k; ++i) {
		int label = y[v_total[i]];
		mp[label] += 1;
	}
	int max_end_result = 0;
	for (std::map<int, int>::iterator it = mp.begin(); it != mp.end(); it++) {
		if (it->first > max_end_result) {
			max_end_result = it->first;
		}
	}
	return max_end_result;
}
int main() {
	int k = 12;
	int value = knn(k);
	std::cout << "result:\n" << std::endl;
	return 0;
}

七、数据处理、分析、测试

处理excel和txt数据

excel数据是矩阵数据,可直接使用,在此不做处理。

文本txt数据需要一些数据处理

def file2matrix(filename):
	fr = open(filename)
	# 读取行数据直到尾部
	arrayOLines = fr.readlines()
	# 获取行数
	numberOfLines = len(arrayOLines)
	# 创建返回shape为(numberOfLines, 3)numpy矩阵
	returnMat = zeros((numberOfLines, 3))
	classLabelVector = []
	index = 0
	for line in arrayOLines:
		# 去除首尾的回车符
		line = line.strip()
		# 以tab字符'\t'为符号进行分割字符串
		listFromLine = line.split('\t')
		# 选取前3个元素,把他们存储到特征矩阵中
		returnMat[index, :] = listFromLine[0: 3]
		# 把目标变量放到目标数组中
		classLabelVector.append(int(listFromLine[-1]))
		index += 1
	return returnMat, classLabelVector

数据归一化和标准化

在数值当中,会有一些数据大小参差不齐,严重影响数据的真实性,因此,对数据进行归一化和标准化是使得数据取值在一定的区间,具有更好的拟合度。

例如归一化就是将数据取值范围处理为0到1或者-1到1之间

# max:最大特征值
# min:最小特征值
newValue = (oldValue - min)/(max-min)

写个函数

def autoNorm(dataSet):
	# min(0)返回该矩阵中每一列的最小值
	minVals = dataSet.min(0)
	# max(0)返回该矩阵中每一列的最大值
	maxVals = dataSet.max(0)
	# 求出极值
	ranges = maxVals - minVals
	# 创建一个相同行列的0矩阵
	normDataSet = zeros(shape(dataSet))
	# 得到行数
	m = dataSet.shape[0]
	# 得到一个原矩阵减去m倍行1倍列的minVals
	normDataSet = dataSet - tile(minVlas, (m,1))
	# 特征值相除
	normDataSet = normDataSet/tile(ranges, (m, 1))
	return normDataSet, ranges, minVals

归一化的缺点:如果异常值就是最大值或者最小值,那么归一化也就没有了保证(稳定性较差,只适合传统精确小数据场景)

标准化可查

八、鸢尾花数据测试

既然已经了解其内置的算法了,那么便调库来写一个吧

from sklearn.datasets import load_iris      # 导入内置数据集
from sklearn.model_selection import train_test_split        # 提供数据集分类方法
from sklearn.preprocessing import StandardScaler        # 标准化
from sklearn.neighbors import KNeighborsClassifier      # KNN

def knn_iris():
    # 获得鸢尾花数据集
    iris = load_iris()
    # 获取数据集
    # random_state为随机数种子,一个数据集中相等的行不能大于6
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=6)
    # 特征工程:标准化
    transfer = StandardScaler()
    # 训练集标准化
    x_train = transfer.fit_transform(x_train)
    # 测试集标准化
    x_test = transfer.transform(x_test)
    # 设置近邻个数
    estimator = KNeighborsClassifier(n_neighbors=3)
    # 训练集测试形成模型
    estimator.fit(x_train, y_train)

    # 模型预估
    # 根据预测特征值得出预测目标值
    y_predict = estimator.predict(x_test)
    print("y_predict: \n", y_predict)
    # 得出预测目标值和真实目标值之间是否相等
    print("直接比对真实值和预测值:\n", y_test == y_predict)
    # 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

def main():
    knn_iris()

if __name__ == '__main__':
    main()

九、RESULT

到此这篇关于Python机器学习之KNN近邻算法的文章就介绍到这了,更多相关Python近邻算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于python实现KNN分类算法

    kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有关.由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合. 通俗简单的说,就是将这个样本进行分类,怎么分类,就是用该样本的

  • python可视化实现KNN算法

    简介 这里通过python的绘图工具Matplotlib包可视化实现机器学习中的KNN算法. 需要提前安装python的Numpy和Matplotlib包. KNN–最近邻分类算法,算法逻辑比较简单,思路如下: 1.设一待分类数据iData,先计算其到已标记数据集中每个数据的距离,例如欧拉距离sqrt((x1-x2)^2+(y1-y2)^2): 2.然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类. KNN--最近邻算法python代码 代码实现: import

  • 在python中利用KNN实现对iris进行分类的方法

    如下所示: from sklearn.datasets import load_iris iris = load_iris() print iris.data.shape from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size = 0.25, random_state = 3

  • Python机器学习之scikit-learn库中KNN算法的封装与使用方法

    本文实例讲述了Python机器学习之scikit-learn库中KNN算法的封装与使用方法.分享给大家供大家参考,具体如下: 1.工具准备,python环境,pycharm 2.在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型.当然这里必须将训练数据和训练标签进行拟合才能形成模型. 3.在pycharm中创建新的项目工程,并在项目下新建KNN.py文件. import numpy as np from math import s

  • 原生python实现knn分类算法

    一.题目要求 用原生Python实现knn分类算法. 二.题目分析 数据来源:鸢尾花数据集(见附录Iris.txt) 数据集包含150个数据集,分为3类,分别是:Iris Setosa(山鸢尾).Iris Versicolour(杂色鸢尾)和Iris Virginica(维吉尼亚鸢尾).每类有50个数据,每个数据包含四个属性,分别是:Sepal.Length(花萼长度).Sepal.Width(花萼宽度).Petal.Length(花瓣长度)和Petal.Width(花瓣宽度). 将得到的数据集

  • python实现KNN近邻算法

    示例:<电影类型分类> 获取数据来源 电影名称 打斗次数 接吻次数 电影类型 California Man 3 104 Romance He's Not Really into Dudes 8 95 Romance Beautiful Woman 1 81 Romance Kevin Longblade 111 15 Action Roob Slayer 3000 99 2 Action Amped II 88 10 Action Unknown 18 90 unknown 数据显示:肉眼判断

  • K近邻法(KNN)相关知识总结以及如何用python实现

    1.基本概念 K近邻法(K-nearest neighbors,KNN)既可以分类,也可以回归. KNN做回归和分类的区别在于最后预测时的决策方式. KNN做分类时,一般用多数表决法 KNN做回归时,一般用平均法.  基本概念如下:对待测实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中 2. KNN算法三要素 KNN算法主要考虑:k值的选取,距离度量方式,分类决策规则. 1) k值的选取.在应用中,k值一般选

  • python实现KNN分类算法

    一.KNN算法简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类别决策时,只与极少量的相邻样本有

  • Python图像识别+KNN求解数独的实现

    Python-opencv+KNN求解数独 最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s. 整体思路大概就是识别出图中数字生成list,然后求解. 输入输出demo 数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示: 经过程序求解后,得到的结果如下图所示: 程序具体流程 程序整体流程如下图所示: 读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字:无数字信息的在list中

  • 使用python实现kNN分类算法

    k-近邻算法是基本的机器学习算法,算法的原理非常简单: 输入样本数据后,计算输入样本和参考样本之间的距离,找出离输入样本距离最近的k个样本,找出这k个样本中出现频率最高的类标签作为输入样本的类标签,很直观也很简单,就是和参考样本集中的样本做对比.下面讲一讲用python实现kNN算法的方法,这里主要用了python中常用的numpy模块,采用的数据集是来自UCI的一个数据集,总共包含1055个样本,每个样本有41个real的属性和一个类标签,包含两类(RB和NRB).我选取800条样本作为参考样

  • Python实现KNN(K-近邻)算法的示例代码

    一.概述 KNN(K-最近邻)算法是相对比较简单的机器学习算法之一,它主要用于对事物进行分类.用比较官方的话来说就是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例, 这K个实例的多数属于某个类,就把该输入实例分类到这个类中.为了更好地理解,通过一个简单的例子说明. 我们有一组自拟的关于电影中镜头的数据: 那么问题来了,如果有一部电影 X,它的打戏为 3,吻戏为 2.那么这部电影应该属于哪一类? 我们把所有数据通过图表显示出来(圆点代表的是自拟的数据,也称训练集:

随机推荐