JDK源码之Vector与HashSet解析
Vector简介
ArrayList 和 Vector 其实大同小异,基本结构都差不多,但是一些细节上有区别:比如线程安全与否,扩容的大小等,Vector的线程安全通过在方法上直接加synchronized实现。扩容默认扩大为原来的2倍。
继承体系
从图中我们可以看出:Vector继承了AbstractList,实现了List,RandomAccess,Cloneable,Serializable接口,因此Vector支持快速随机访问,可以被克隆,支持序列化。
Vector的成员变量(属性)
// Object类型的数组 // 注意:访问修饰符有所不同,Vector用protected修饰,而ArrayList用private修饰。 // JavaSe中:private变量只能被当前类的方法访问,而protected可以被同一包中的所有类和其他包的子类访问 protected Object[] elementData; // 动态数组的实际有效大小,即数组中存储的元素个数 protected int elementCount; // 动态数组的增长系数:若开始事先没有指定,则默认是增加一倍的大小 protected int capacityIncrement; // 序列版本号 private static final long serialVersionUID = -2767605614048989439L;
Vector的构造函数
Vector的构造函数有四个:
// 默认空参构造函数 public Vector() { // 调用指定初始容量的构造函数,初始容量为10 this(10); } // 可以指定初始容量的构造函数 public Vector(int initialCapacity) { // 调用指定初始容量和增长系数的构造函数,增长系数设置为0 this(initialCapacity, 0); } // 可以指定初始容量和增长系数的构造函数 public Vector(int initialCapacity, int capacityIncrement) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); // 根据初始容量创建一个Object类型的数组 this.elementData = new Object[initialCapacity]; // 给增长系数赋值 this.capacityIncrement = capacityIncrement; } // 参数为集合类型的构造函数 public Vector(Collection<? extends E> c) { elementData = c.toArray(); elementCount = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) // 将参数集合c 中的数据拷贝到elementData elementData = Arrays.copyOf(elementData, elementCount, Object[].class); }
Vector成员方法
get方法
// 获得指定下标的元素数据 public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); return elementData(index); } @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; }
set方法
// 修改指定下标的元素数据 public synchronized E set(int index, E element) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; }
remove方法
// 删除某个元素数据 public boolean remove(Object o) { return removeElement(o); } // public synchronized boolean removeElement(Object obj) { modCount++; // 找到指定元素的下标 int i = indexOf(obj); if (i >= 0) { // 根据下标删除元素 removeElementAt(i); return true; } return false; } // 根据下标删除元素 public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } // index之后的有效元素数量 int j = elementCount - index - 1; if (j > 0) { // 旧数组替换新数组 System.arraycopy(elementData, index + 1, elementData, index, j); } // 有效元素数量-- elementCount--; elementData[elementCount] = null; /* to let gc do its work */ }
add方法
// 在数组末尾添加指定元素 public synchronized boolean add(E e) { modCount++; // 判断是否需要扩容 ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; }
其他方法
// 将数组Vector中的全部元素都拷贝到数组anArray中去,调用本地方法arraycopy public synchronized void copyInto(Object[] anArray) { System.arraycopy(elementData, 0, anArray, 0, elementCount); } public synchronized void trimToSize() { modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) { elementData = Arrays.copyOf(elementData, elementCount); } } // 设置Vector数组的大小 public synchronized void setSize(int newSize) { // 修改次数++ modCount++; // 判断设置的数组大小是否大于Vector中有存储的效元素的个数 // 若 newSize > Vector中有存储的效元素的个数,则调整Vector的大小 if (newSize > elementCount) { // 调用判断是否扩容的方法,如果需要扩容则该方法内部调用扩容方法grow() ensureCapacityHelper(newSize); } else { // 如果上述判断不成立,则将newSize位置之后开始的元素都设置为null for (int i = newSize ; i < elementCount ; i++) { elementData[i] = null; } } // 更新有效元素个数 elementCount = newSize; } // 获取Vector的当前容量 public synchronized int capacity() { return elementData.length; } // 获取Vector里面的有效元素个数 public synchronized int size() { return elementCount; } // 判断Vecotor中是否包含元素 o public boolean contains(Object o) { return indexOf(o, 0) >= 0; } // 获取Vector数组中第一次出现对象o的下标,如果不存在,那么返回-1 public int indexOf(Object o) { return indexOf(o, 0); } // 返回从index出开始第一次出现对象o的下标,如果不存在,那么返回-1 public synchronized int indexOf(Object o, int index) { if (o == null) { for (int i = index ; i < elementCount ; i++) if (elementData[i]==null) return i; } else { for (int i = index ; i < elementCount ; i++) if (o.equals(elementData[i])) return i; } return -1; } ......
Vector的扩容方法
// 确定数组当前的容量大小 public synchronized void ensureCapacity(int minCapacity) { if (minCapacity > 0) { modCount++; ensureCapacityHelper(minCapacity); } } // 如果:当前容量 > 当前数组长度,就调用grow(minCapacity)方法进行扩容 // 由于该方法是在ensureCapacity()中被调用的,而ensureCapacity()方法中已经加上了synchronized锁,所以 // 该方法不需要再加锁 private void ensureCapacityHelper(int minCapacity) { // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } // 最大上限的数组容量大小 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE // Vector集合中的核心扩容方法 private void grow(int minCapacity) { // overflow-conscious code // 获取旧数组的容量 int oldCapacity = elementData.length; // 得到扩容后(如果需要扩容的话)的新数组容量 int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); // 如果新容量 < 数组实际所需容量,则令newCapacity = minCapacity if (newCapacity - minCapacity < 0) newCapacity = minCapacity; // 如果当前所需容量 > MAX_ARRAY_SIZE,则新容量设为 Integer.MAX_VALUE,否则设为 MAX_ARRAY_SIZE if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } // 最大容量 private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }
完整源码
public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { protected Object[] elementData; protected int elementCount; protected int capacityIncrement; private static final long serialVersionUID = -2767605614048989439L; public Vector(int initialCapacity, int capacityIncrement) { super(); if (initialCapacity < 0) throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); this.elementData = new Object[initialCapacity]; this.capacityIncrement = capacityIncrement; } public Vector(int initialCapacity) { this(initialCapacity, 0); } public Vector() { this(10); } public Vector(Collection<? extends E> c) { elementData = c.toArray(); elementCount = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, elementCount, Object[].class); } public synchronized void copyInto(Object[] anArray) { System.arraycopy(elementData, 0, anArray, 0, elementCount); } public synchronized void trimToSize() { modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) { elementData = Arrays.copyOf(elementData, elementCount); } } public synchronized void ensureCapacity(int minCapacity) { if (minCapacity > 0) { modCount++; ensureCapacityHelper(minCapacity); } } private void ensureCapacityHelper(int minCapacity) { // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ? capacityIncrement : oldCapacity); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } public synchronized void setSize(int newSize) { modCount++; if (newSize > elementCount) { ensureCapacityHelper(newSize); } else { for (int i = newSize ; i < elementCount ; i++) { elementData[i] = null; } } elementCount = newSize; } public synchronized int capacity() { return elementData.length; } public synchronized int size() { return elementCount; } public synchronized boolean isEmpty() { return elementCount == 0; } public Enumeration<E> elements() { return new Enumeration<E>() { int count = 0; public boolean hasMoreElements() { return count < elementCount; } public E nextElement() { synchronized (Vector.this) { if (count < elementCount) { return elementData(count++); } } throw new NoSuchElementException("Vector Enumeration"); } }; } public boolean contains(Object o) { return indexOf(o, 0) >= 0; } public int indexOf(Object o) { return indexOf(o, 0); } public synchronized int indexOf(Object o, int index) { if (o == null) { for (int i = index ; i < elementCount ; i++) if (elementData[i]==null) return i; } else { for (int i = index ; i < elementCount ; i++) if (o.equals(elementData[i])) return i; } return -1; } public synchronized int lastIndexOf(Object o) { return lastIndexOf(o, elementCount-1); } public synchronized int lastIndexOf(Object o, int index) { if (index >= elementCount) throw new IndexOutOfBoundsException(index + " >= "+ elementCount); if (o == null) { for (int i = index; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = index; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } public synchronized E elementAt(int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } return elementData(index); } public synchronized E firstElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(0); } public synchronized E lastElement() { if (elementCount == 0) { throw new NoSuchElementException(); } return elementData(elementCount - 1); } public synchronized void setElementAt(E obj, int index) { if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } elementData[index] = obj; } public synchronized void removeElementAt(int index) { modCount++; if (index >= elementCount) { throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); } else if (index < 0) { throw new ArrayIndexOutOfBoundsException(index); } int j = elementCount - index - 1; if (j > 0) { System.arraycopy(elementData, index + 1, elementData, index, j); } elementCount--; elementData[elementCount] = null; /* to let gc do its work */ } public synchronized void insertElementAt(E obj, int index) { modCount++; if (index > elementCount) { throw new ArrayIndexOutOfBoundsException(index + " > " + elementCount); } ensureCapacityHelper(elementCount + 1); System.arraycopy(elementData, index, elementData, index + 1, elementCount - index); elementData[index] = obj; elementCount++; } public synchronized void addElement(E obj) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; } public synchronized boolean removeElement(Object obj) { modCount++; int i = indexOf(obj); if (i >= 0) { removeElementAt(i); return true; } return false; } public synchronized void removeAllElements() { modCount++; // Let gc do its work for (int i = 0; i < elementCount; i++) elementData[i] = null; elementCount = 0; } public synchronized Object clone() { try { @SuppressWarnings("unchecked") Vector<E> v = (Vector<E>) super.clone(); v.elementData = Arrays.copyOf(elementData, elementCount); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } public synchronized Object[] toArray() { return Arrays.copyOf(elementData, elementCount); } @SuppressWarnings("unchecked") public synchronized <T> T[] toArray(T[] a) { if (a.length < elementCount) return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); System.arraycopy(elementData, 0, a, 0, elementCount); if (a.length > elementCount) a[elementCount] = null; return a; } // Positional Access Operations @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } public synchronized E get(int index) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); return elementData(index); } public synchronized E set(int index, E element) { if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } public synchronized boolean add(E e) { modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; } public boolean remove(Object o) { return removeElement(o); } public void add(int index, E element) { insertElementAt(element, index); } public synchronized E remove(int index) { modCount++; if (index >= elementCount) throw new ArrayIndexOutOfBoundsException(index); E oldValue = elementData(index); int numMoved = elementCount - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--elementCount] = null; // Let gc do its work return oldValue; } public void clear() { removeAllElements(); } // Bulk Operations public synchronized boolean containsAll(Collection<?> c) { return super.containsAll(c); } public synchronized boolean addAll(Collection<? extends E> c) { modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; } public synchronized boolean removeAll(Collection<?> c) { return super.removeAll(c); } public synchronized boolean retainAll(Collection<?> c) { return super.retainAll(c); } public synchronized boolean addAll(int index, Collection<? extends E> c) { modCount++; if (index < 0 || index > elementCount) throw new ArrayIndexOutOfBoundsException(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); int numMoved = elementCount - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); elementCount += numNew; return numNew != 0; } public synchronized boolean equals(Object o) { return super.equals(o); } public synchronized int hashCode() { return super.hashCode(); } public synchronized String toString() { return super.toString(); } public synchronized List<E> subList(int fromIndex, int toIndex) { return Collections.synchronizedList(super.subList(fromIndex, toIndex), this); } protected synchronized void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // Let gc do its work int newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount) elementData[--elementCount] = null; } private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException { ObjectInputStream.GetField gfields = in.readFields(); int count = gfields.get("elementCount", 0); Object[] data = (Object[])gfields.get("elementData", null); if (count < 0 || data == null || count > data.length) { throw new StreamCorruptedException("Inconsistent vector internals"); } elementCount = count; elementData = data.clone(); } private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) { fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = elementData.clone(); } fields.put("elementData", data); s.writeFields(); } public synchronized ListIterator<E> listIterator(int index) { if (index < 0 || index > elementCount) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } public synchronized ListIterator<E> listIterator() { return new ListItr(0); } public synchronized Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; public boolean hasNext() { // Racy but within spec, since modifications are checked // within or after synchronization in next/previous return cursor != elementCount; } public E next() { synchronized (Vector.this) { checkForComodification(); int i = cursor; if (i >= elementCount) throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); } } public void remove() { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; } cursor = lastRet; lastRet = -1; } @Override public void forEachRemaining(Consumer<? super E> action) { Objects.requireNonNull(action); synchronized (Vector.this) { final int size = elementCount; int i = cursor; if (i >= size) { return; } @SuppressWarnings("unchecked") final E[] elementData = (E[]) Vector.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { action.accept(elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * An optimized version of AbstractList.ListItr */ final class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public E previous() { synchronized (Vector.this) { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); } } public void set(E e) { if (lastRet == -1) throw new IllegalStateException(); synchronized (Vector.this) { checkForComodification(); Vector.this.set(lastRet, e); } } public void add(E e) { int i = cursor; synchronized (Vector.this) { checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; } cursor = i + 1; lastRet = -1; } } @Override public synchronized void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int elementCount = this.elementCount; for (int i=0; modCount == expectedModCount && i < elementCount; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public synchronized boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final int size = elementCount; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } elementCount = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } @Override @SuppressWarnings("unchecked") public synchronized void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = elementCount; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @SuppressWarnings("unchecked") @Override public synchronized void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, elementCount, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } @Override public Spliterator<E> spliterator() { return new VectorSpliterator<>(this, null, 0, -1, 0); } /** Similar to ArrayList Spliterator */ static final class VectorSpliterator<E> implements Spliterator<E> { private final Vector<E> list; private Object[] array; private int index; // current index, modified on advance/split private int fence; // -1 until used; then one past last index private int expectedModCount; // initialized when fence set /** Create new spliterator covering the given range */ VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence, int expectedModCount) { this.list = list; this.array = array; this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } private int getFence() { // initialize on first use int hi; if ((hi = fence) < 0) { synchronized(list) { array = list.elementData; expectedModCount = list.modCount; hi = fence = list.elementCount; } } return hi; } public Spliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : new VectorSpliterator<E>(list, array, lo, index = mid, expectedModCount); } @SuppressWarnings("unchecked") public boolean tryAdvance(Consumer<? super E> action) { int i; if (action == null) throw new NullPointerException(); if (getFence() > (i = index)) { index = i + 1; action.accept((E)array[i]); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> action) { int i, hi; // hoist accesses and checks from loop Vector<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null) { if ((hi = fence) < 0) { synchronized(lst) { expectedModCount = lst.modCount; a = array = lst.elementData; hi = fence = lst.elementCount; } } else a = array; if (a != null && (i = index) >= 0 && (index = hi) <= a.length) { while (i < hi) action.accept((E) a[i++]); if (lst.modCount == expectedModCount) return; } } throw new ConcurrentModificationException(); } public long estimateSize() { return (long) (getFence() - index); } public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } }
HashSet简介
HashSet的特点
- 无序性(存储元素无序)
- 唯一性(允许使用null)
- 本质上,HashSet底层是通过HashMap来保证唯一性
- HashSet没有提供get()方法,同HashMap一样,因为Set内部是无序的,所以只能通过迭代的方式获得
HashSet的继承体系
HashSet源码分析
1. 属性(成员变量)
// HashSet内部使用HashMap来存储元素,因此本质上是HashMap private transient HashMap<E,Object> map; // 虚拟对象,用来作为value放到map中(在HashSet底层的HashMap中,key为要存储的元素,value统一为PRESENT) private static final Object PRESENT = new Object();
2. 构造方法
public HashSet() { map = new HashMap<>(); } public HashSet(Collection<? extends E> c) { map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); } public HashSet(int initialCapacity, float loadFactor) { map = new HashMap<>(initialCapacity, loadFactor); } public HashSet(int initialCapacity) { map = new HashMap<>(initialCapacity); } // 注意:这里未用public修饰,主要是给LinkedHashSet使用的 HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); }
构造方法都是调用HashMap对应的构造方法。最后一个构造方法有点特殊,它不是public的,意味着它只能被同一个包或者子类调用,这是LinkedHashSet专属的方法。
3. 成员方法
3.1 添加元素add(E e)
// HashSet添加元素的时候,直接调用的是HashMap中的put()方法, // 把元素本身作为key,把PRESENT作为value,也就是这个map中所有的value都是一样的。 public boolean add(E e) { return map.put(e, PRESENT)==null; }
3.2 删除元素remove(Object o)
// HashSet删除元素,直接调用HashMap的remove方法 public boolean remove(Object o) { // 注意:map的remove返回是删除元素的value,而Set的remov返回的是boolean类型 // 如果是null的话说明没有该元素,如果不是null肯定等于PRESENT return map.remove(o)==PRESENT; }
3.3 查找元素contains(Object o)
// Set中没有get()方法,不像List那样可以按index获取元素 public boolean contains(Object o) { return map.containsKey(o); }
4. 完整代码
HashSet是基于HashMap的,所以其源码较少:
package java.util; import java.io.InvalidObjectException; import sun.misc.SharedSecrets; public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, java.io.Serializable { static final long serialVersionUID = -5024744406713321676L; // 内部元素存储在HashMap中 private transient HashMap<E,Object> map; // 虚拟元素,用来存到map元素的value中的,没有实际意义 private static final Object PRESENT = new Object(); // 空构造方法 public HashSet() { map = new HashMap<>(); } // 把另一个集合的元素全都添加到当前Set中 // 注意,这里初始化map的时候是计算了它的初始容量的 public HashSet(Collection<? extends E> c) { map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); } // 指定初始容量和装载因子 public HashSet(int initialCapacity, float loadFactor) { map = new HashMap<>(initialCapacity, loadFactor); } // 只指定初始容量 public HashSet(int initialCapacity) { map = new HashMap<>(initialCapacity); } // LinkedHashSet专用的方法 // dummy是没有实际意义的, 只是为了跟上上面那个操持方法签名不同而已 HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); } // 迭代器 public Iterator<E> iterator() { return map.keySet().iterator(); } // 元素个数 public int size() { return map.size(); } // 检查是否为空 public boolean isEmpty() { return map.isEmpty(); } // 检查是否包含某个元素 public boolean contains(Object o) { return map.containsKey(o); } // 添加元素 public boolean add(E e) { return map.put(e, PRESENT)==null; } // 删除元素 public boolean remove(Object o) { return map.remove(o)==PRESENT; } // 清空所有元素 public void clear() { map.clear(); } // 克隆方法 @SuppressWarnings("unchecked") public Object clone() { try { HashSet<E> newSet = (HashSet<E>) super.clone(); newSet.map = (HashMap<E, Object>) map.clone(); return newSet; } catch (CloneNotSupportedException e) { throw new InternalError(e); } } // 序列化写出方法 private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // 写出非static非transient属性 s.defaultWriteObject(); // 写出map的容量和装载因子 s.writeInt(map.capacity()); s.writeFloat(map.loadFactor()); // 写出元素个数 s.writeInt(map.size()); // 遍历写出所有元素 for (E e : map.keySet()) s.writeObject(e); } // 序列化读入方法 private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // 读入非static非transient属性 s.defaultReadObject(); // 读入容量, 并检查不能小于0 int capacity = s.readInt(); if (capacity < 0) { throw new InvalidObjectException("Illegal capacity: " + capacity); } // 读入装载因子, 并检查不能小于等于0或者是NaN(Not a Number) // java.lang.Float.NaN = 0.0f / 0.0f; float loadFactor = s.readFloat(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) { throw new InvalidObjectException("Illegal load factor: " + loadFactor); } // 读入元素个数并检查不能小于0 int size = s.readInt(); if (size < 0) { throw new InvalidObjectException("Illegal size: " + size); } // 根据元素个数重新设置容量 // 这是为了保证map有足够的容量容纳所有元素, 防止无意义的扩容 capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f), HashMap.MAXIMUM_CAPACITY); // 再次检查某些东西, 不重要的代码忽视掉 SharedSecrets.getJavaOISAccess() .checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity)); // 创建map, 检查是不是LinkedHashSet类型 map = (((HashSet<?>)this) instanceof LinkedHashSet ? new LinkedHashMap<E,Object>(capacity, loadFactor) : new HashMap<E,Object>(capacity, loadFactor)); // 读入所有元素, 并放入map中 for (int i=0; i<size; i++) { @SuppressWarnings("unchecked") E e = (E) s.readObject(); map.put(e, PRESENT); } } // 可分割的迭代器, 主要用于多线程并行迭代处理时使用 public Spliterator<E> spliterator() { return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0); } }
小结
- HashSet内部使用HashMap的key存储元素,以此来保证元素不重复;
- HashSet是无序的,因为HashMap的key是无序的;
- HashSet中允许有一个null元素,因为HashMap允许key为null;
- HashSet是非线程安全的;HashSet是没有get()方法的;
扩展:
当向HashMap中存储n个元素时,它的初始化容量应指定为:((n/0.75f) + 1),如果这个值小于16,就直接使用16为容量。初始化时指定容量是为了减少扩容的次数,提高效率。
LinkedHashSet分析
package java.util; // LinkedHashSet继承自HashSet public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, java.io.Serializable { private static final long serialVersionUID = -2851667679971038690L; // 传入容量和装载因子 public LinkedHashSet(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor, true); } // 只传入容量, 装载因子默认为0.75 public LinkedHashSet(int initialCapacity) { super(initialCapacity, .75f, true); } // 使用默认容量16, 默认装载因子0.75 public LinkedHashSet() { super(16, .75f, true); } // 将集合c中的所有元素添加到LinkedHashSet中 // 好奇怪, 这里计算容量的方式又变了 // HashSet中使用的是Math.max((int) (c.size()/.75f) + 1, 16) // 这一点有点不得其解, 是作者偷懒? public LinkedHashSet(Collection<? extends E> c) { super(Math.max(2*c.size(), 11), .75f, true); addAll(c); } // 可分割的迭代器, 主要用于多线程并行迭代处理时使用 @Override public Spliterator<E> spliterator() { return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED); } }
- LinkedHashSet继承自HashSet,它的添加、删除、查询等方法都是直接用的HashSet的,唯一的不同就是它使用LinkedHashMap存储元素。
- LinkedHashSet是有序的,它是按照插入的顺序排序的。
- LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。
因为,LinkedHashSet所有的构造方法都是调用HashSet的同一个构造方法,如下:
// HashSet的构造方法 HashSet(int initialCapacity, float loadFactor, boolean dummy) { map = new LinkedHashMap<>(initialCapacity, loadFactor); }
通过调用LinkedHashMap的构造方法初始化map,如下所示:
public LinkedHashMap(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor); accessOrder = false; }
总结
这样可以看到,这里把accessOrder写死为false了,所以,LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。还请大家多多关注我们的其他文章!
赞 (0)