golang的时区和神奇的time.Parse的使用方法

时区

先写一段测试代码:

const TIME_LAYOUT = "2006-01-02 15:04:05"

func parseWithLocation(name string, timeStr string) (time.Time, error) {
 locationName := name
 if l, err := time.LoadLocation(locationName); err != nil {
  println(err.Error())
  return time.Time{}, err
 } else {
  lt, _ := time.ParseInLocation(TIME_LAYOUT, timeStr, l)
  fmt.Println(locationName, lt)
  return lt, nil
 }
}
func testTime() {
 fmt.Println("0. now: ", time.Now())
 str := "2018-09-10 00:00:00"
 fmt.Println("1. str: ", str)
 t, _ := time.Parse(TIME_LAYOUT, str)
 fmt.Println("2. Parse time: ", t)
 tStr := t.Format(TIME_LAYOUT)
 fmt.Println("3. Format time str: ", tStr)
 name, offset := t.Zone()
 name2, offset2 := t.Local().Zone()
 fmt.Printf("4. Zone name: %v, Zone offset: %v\n", name, offset)
 fmt.Printf("5. Local Zone name: %v, Local Zone offset: %v\n", name2, offset2)
 tLocal := t.Local()
 tUTC := t.UTC()
 fmt.Printf("6. t: %v, Local: %v, UTC: %v\n", t, tLocal, tUTC)
 fmt.Printf("7. t: %v, Local: %v, UTC: %v\n", t.Format(TIME_LAYOUT), tLocal.Format(TIME_LAYOUT), tUTC.Format(TIME_LAYOUT))
 fmt.Printf("8. Local.Unix: %v, UTC.Unix: %v\n", tLocal.Unix(), tUTC.Unix())
 str2 := "1969-12-31 23:59:59"
 t2, _ := time.Parse(TIME_LAYOUT, str2)
 fmt.Printf("9. str2:%v,time: %v, Unix: %v\n", str2, t2, t2.Unix())
 fmt.Printf("10. %v, %v\n", tLocal.Format(time.ANSIC), tUTC.Format(time.ANSIC))
 fmt.Printf("11. %v, %v\n", tLocal.Format(time.RFC822), tUTC.Format(time.RFC822))
 fmt.Printf("12. %v, %v\n", tLocal.Format(time.RFC822Z), tUTC.Format(time.RFC822Z))

 //指定时区
 parseWithLocation("America/Cordoba", str)
 parseWithLocation("Asia/Shanghai", str)
 parseWithLocation("Asia/Beijing", str)
}
testTime()

输出:

0. now:  2018-09-19 19:06:07.3642781 +0800 CST m=+0.005995601
1. str:  2018-09-10 00:00:00
2. Parse time:  2018-09-10 00:00:00 +0000 UTC
3. Format time str:  2018-09-10 00:00:00
4. Zone name: UTC, Zone offset: 0
5. Local Zone name: CST, Local Zone offset: 28800
6. t: 2018-09-10 00:00:00 +0000 UTC, Local: 2018-09-10 08:00:00 +0800 CST, UTC: 2018-09-10 00:00:00 +0000 UTC
7. t: 2018-09-10 00:00:00, Local: 2018-09-10 08:00:00, UTC: 2018-09-10 00:00:00
8. Local.Unix: 1536537600, UTC.Unix: 1536537600
9. str2:1969-12-31 23:59:59,time: 1969-12-31 23:59:59 +0000 UTC, Unix: -1
10. Mon Sep 10 08:00:00 2018, Mon Sep 10 00:00:00 2018
11. 10 Sep 18 08:00 CST, 10 Sep 18 00:00 UTC
12. 10 Sep 18 08:00 +0800, 10 Sep 18 00:00 +0000
America/Cordoba 2018-09-10 00:00:00 -0300 -03
Asia/Shanghai 2018-09-10 00:00:00 +0800 CST
cannot find Asia/Beijing in zip file C:\Go\/lib/time/zoneinfo.zip

从以上代码的测试结果可以得出几点:

  • time.Now 得到的当前时间的时区跟电脑的当前时区一样。
  • time.Parse 把时间字符串转换为Time,时区是UTC时区。
  • 不管Time变量存储的是什么时区,其Unix()方法返回的都是距离UTC时间:1970年1月1日0点0分0秒的秒数。
  • Unix()返回的秒数可以是负数,如果时间小于1970-01-01 00:00:00的话。
  • Zone方法可以获得变量的时区和时区与UTC的偏移秒数,应该支持夏令时和冬令时。
  • time.LoadLocation可以根据时区名创建时区Location,所有的时区名字可以在$GOROOT/lib/time/zoneinfo.zip文件中找到,解压zoneinfo.zip可以得到一堆目录和文件,我们只需要目录和文件的名字,时区名是目录名+文件名,比如"Asia/Shanghai"。中国时区名只有"Asia/Shanghai"和"Asia/Chongqing",而没有"Asia/Beijing"。
  • time.ParseInLocation可以根据时间字符串和指定时区转换Time。
  • 感谢中国只有一个时区而且没有夏令时和冬令时,可怕的美国居然有6个时区,想想都可怕。

神奇的time.Parse

一开始使用time.Parse时很不习惯,因为非常奇怪的layout参数。
除了golang自带定义的layout:

const (
 ANSIC  = "Mon Jan _2 15:04:05 2006"
 UnixDate = "Mon Jan _2 15:04:05 MST 2006"
 RubyDate = "Mon Jan 02 15:04:05 -0700 2006"
 RFC822  = "02 Jan 06 15:04 MST"
 RFC822Z  = "02 Jan 06 15:04 -0700" // RFC822 with numeric zone
 RFC850  = "Monday, 02-Jan-06 15:04:05 MST"
 RFC1123  = "Mon, 02 Jan 2006 15:04:05 MST"
 RFC1123Z = "Mon, 02 Jan 2006 15:04:05 -0700" // RFC1123 with numeric zone
 RFC3339  = "2006-01-02T15:04:05Z07:00"
 RFC3339Nano = "2006-01-02T15:04:05.999999999Z07:00"
 Kitchen  = "3:04PM"
 // Handy time stamps.
 Stamp  = "Jan _2 15:04:05"
 StampMilli = "Jan _2 15:04:05.000"
 StampMicro = "Jan _2 15:04:05.000000"
 StampNano = "Jan _2 15:04:05.000000000"
)

还可以自定义layout,比如:

"2006-01-02 15:04:05"

网上基本上都在传说这个日子是golang项目开始创建的时间,为了纪念生日才这样设计,其实这真是无稽之谈瞎扯淡。
网上文章没有找到说的比较清楚的,幸好有源码,打开time.Parse的源码看了一下,发现这个设计很好很科学。
解析layout的主要代码在nextStdChunk方法中:

// nextStdChunk finds the first occurrence of a std string in
// layout and returns the text before, the std string, and the text after.
func nextStdChunk(layout string) (prefix string, std int, suffix string) {
 for i := 0; i < len(layout); i++ {
  switch c := int(layout[i]); c {
  case 'J': // January, Jan
   if len(layout) >= i+3 && layout[i:i+3] == "Jan" {
    if len(layout) >= i+7 && layout[i:i+7] == "January" {
     return layout[0:i], stdLongMonth, layout[i+7:]
    }
    if !startsWithLowerCase(layout[i+3:]) {
     return layout[0:i], stdMonth, layout[i+3:]
    }
   }

  case 'M': // Monday, Mon, MST
   if len(layout) >= i+3 {
    if layout[i:i+3] == "Mon" {
     if len(layout) >= i+6 && layout[i:i+6] == "Monday" {
      return layout[0:i], stdLongWeekDay, layout[i+6:]
     }
     if !startsWithLowerCase(layout[i+3:]) {
      return layout[0:i], stdWeekDay, layout[i+3:]
     }
    }
    if layout[i:i+3] == "MST" {
     return layout[0:i], stdTZ, layout[i+3:]
    }
   }

  case '0': // 01, 02, 03, 04, 05, 06
   if len(layout) >= i+2 && '1' <= layout[i+1] && layout[i+1] <= '6' {
    return layout[0:i], std0x[layout[i+1]-'1'], layout[i+2:]
   }

  case '1': // 15, 1
   if len(layout) >= i+2 && layout[i+1] == '5' {
    return layout[0:i], stdHour, layout[i+2:]
   }
   return layout[0:i], stdNumMonth, layout[i+1:]

  case '2': // 2006, 2
   if len(layout) >= i+4 && layout[i:i+4] == "2006" {
    return layout[0:i], stdLongYear, layout[i+4:]
   }
   return layout[0:i], stdDay, layout[i+1:]

  case '_': // _2, _2006
   if len(layout) >= i+2 && layout[i+1] == '2' {
    //_2006 is really a literal _, followed by stdLongYear
    if len(layout) >= i+5 && layout[i+1:i+5] == "2006" {
     return layout[0 : i+1], stdLongYear, layout[i+5:]
    }
    return layout[0:i], stdUnderDay, layout[i+2:]
   }

  case '3':
   return layout[0:i], stdHour12, layout[i+1:]

  case '4':
   return layout[0:i], stdMinute, layout[i+1:]

  case '5':
   return layout[0:i], stdSecond, layout[i+1:]

  case 'P': // PM
   if len(layout) >= i+2 && layout[i+1] == 'M' {
    return layout[0:i], stdPM, layout[i+2:]
   }

  case 'p': // pm
   if len(layout) >= i+2 && layout[i+1] == 'm' {
    return layout[0:i], stdpm, layout[i+2:]
   }

  case '-': // -070000, -07:00:00, -0700, -07:00, -07
   if len(layout) >= i+7 && layout[i:i+7] == "-070000" {
    return layout[0:i], stdNumSecondsTz, layout[i+7:]
   }
   if len(layout) >= i+9 && layout[i:i+9] == "-07:00:00" {
    return layout[0:i], stdNumColonSecondsTZ, layout[i+9:]
   }
   if len(layout) >= i+5 && layout[i:i+5] == "-0700" {
    return layout[0:i], stdNumTZ, layout[i+5:]
   }
   if len(layout) >= i+6 && layout[i:i+6] == "-07:00" {
    return layout[0:i], stdNumColonTZ, layout[i+6:]
   }
   if len(layout) >= i+3 && layout[i:i+3] == "-07" {
    return layout[0:i], stdNumShortTZ, layout[i+3:]
   }

  case 'Z': // Z070000, Z07:00:00, Z0700, Z07:00,
   if len(layout) >= i+7 && layout[i:i+7] == "Z070000" {
    return layout[0:i], stdISO8601SecondsTZ, layout[i+7:]
   }
   if len(layout) >= i+9 && layout[i:i+9] == "Z07:00:00" {
    return layout[0:i], stdISO8601ColonSecondsTZ, layout[i+9:]
   }
   if len(layout) >= i+5 && layout[i:i+5] == "Z0700" {
    return layout[0:i], stdISO8601TZ, layout[i+5:]
   }
   if len(layout) >= i+6 && layout[i:i+6] == "Z07:00" {
    return layout[0:i], stdISO8601ColonTZ, layout[i+6:]
   }
   if len(layout) >= i+3 && layout[i:i+3] == "Z07" {
    return layout[0:i], stdISO8601ShortTZ, layout[i+3:]
   }

  case '.': // .000 or .999 - repeated digits for fractional seconds.
   if i+1 < len(layout) && (layout[i+1] == '0' || layout[i+1] == '9') {
    ch := layout[i+1]
    j := i + 1
    for j < len(layout) && layout[j] == ch {
     j++
    }
    // String of digits must end here - only fractional second is all digits.
    if !isDigit(layout, j) {
     std := stdFracSecond0
     if layout[i+1] == '9' {
      std = stdFracSecond9
     }
     std |= (j - (i + 1)) << stdArgShift
     return layout[0:i], std, layout[j:]
    }
   }
  }
 }
 return layout, 0, ""
}

可以发现layout的所有代表年月日时分秒甚至时区的值都是互斥不相等的。

比如年份:短年份06,长年份2006,
月份:01,Jan,January
日:02,2,_2
时:15,3,03
分:04, 4
秒:05, 5

因为都不相等所以通过遍历layout就可以switch case解析出每个区块的意义和在字符串中的位置,这样输入对应格式的时间字符串就可以顺利解析出来。
这样layout也可以自定义,而且顺序任意,只要符合下列每个区块定义的规则即可,
代码中的注释就是规则写法:

const (
 _      = iota
 stdLongMonth    = iota + stdNeedDate // "January"
 stdMonth          // "Jan"
 stdNumMonth         // "1"
 stdZeroMonth         // "01"
 stdLongWeekDay         // "Monday"
 stdWeekDay          // "Mon"
 stdDay           // "2"
 stdUnderDay         // "_2"
 stdZeroDay          // "02"
 stdHour     = iota + stdNeedClock // "15"
 stdHour12          // "3"
 stdZeroHour12         // "03"
 stdMinute          // "4"
 stdZeroMinute         // "04"
 stdSecond          // "5"
 stdZeroSecond         // "05"
 stdLongYear    = iota + stdNeedDate // "2006"
 stdYear          // "06"
 stdPM     = iota + stdNeedClock // "PM"
 stdpm           // "pm"
 stdTZ     = iota    // "MST"
 stdISO8601TZ         // "Z0700" // prints Z for UTC
 stdISO8601SecondsTZ       // "Z070000"
 stdISO8601ShortTZ        // "Z07"
 stdISO8601ColonTZ        // "Z07:00" // prints Z for UTC
 stdISO8601ColonSecondsTZ      // "Z07:00:00"
 stdNumTZ          // "-0700" // always numeric
 stdNumSecondsTz        // "-070000"
 stdNumShortTZ         // "-07" // always numeric
 stdNumColonTZ         // "-07:00" // always numeric
 stdNumColonSecondsTZ       // "-07:00:00"
 stdFracSecond0         // ".0", ".00", ... , trailing zeros included
 stdFracSecond9         // ".9", ".99", ..., trailing zeros omitted

 stdNeedDate = 1 << 8    // need month, day, year
 stdNeedClock = 2 << 8    // need hour, minute, second
 stdArgShift = 16     // extra argument in high bits, above low stdArgShift
 stdMask  = 1<<stdArgShift - 1 // mask out argument
)

时区:

时区使用:MST
时区偏移使用-0700或者Z0700等等。
下面是一个使用时区的例子,Z0700比较特殊,当输入时间直接使用Z时就直接代表UTC时区。

func testTimeParse() {
 t, _ := time.Parse("2006-01-02 15:04:05 -0700 MST", "2018-09-20 15:39:06 +0800 CST")
 fmt.Println(t)
 t, _ = time.Parse("2006-01-02 15:04:05 -0700 MST", "2018-09-20 15:39:06 +0000 CST")
 fmt.Println(t)
 t, _ = time.Parse("2006-01-02 15:04:05 Z0700 MST", "2018-09-20 15:39:06 +0800 CST")
 fmt.Println(t)
 t, _ = time.Parse("2006-01-02 15:04:05 Z0700 MST", "2018-09-20 15:39:06 Z GMT")
 fmt.Println(t)
 t, _ = time.Parse("2006-01-02 15:04:05 Z0700 MST", "2018-09-20 15:39:06 +0000 GMT")
 fmt.Println(t)
}

输出:
2018-09-20 15:39:06 +0800 CST
2018-09-20 15:39:06 +0000 CST
2018-09-20 15:39:06 +0800 CST
2018-09-20 15:39:06 +0000 UTC
2018-09-20 15:39:06 +0000 GMT

还有疑问的可以看看go自带的测试例子:Go/src/time/example_test.go

到此这篇关于golang的时区和神奇的time.Parse的使用方法的文章就介绍到这了,更多相关golang的时区和time.Parse内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • golang时间、时区、格式的使用方法

    前几天,因为需要实现海外服务端定时停机,涉及到时区的概念.网上搜索了一下,大部分都是谈time.Format中的Layout,非常不成体系,这里就简单总结一下其中的时间初始化.时区转化及格式转换. 开发中,我们对时间的使用是比较多的,其应用场景,按照使用概率,从大到小,通常是: 获取当前或数据库中存储的时间 比较两个时间点的先后 显示打印时间 时区转换 对应到go,也就是几个基本定义: 时间点与时间段:Time,Duration.好比MVC中的M. 时 区:Location,在时间转换上,好比是

  • golang的时区和神奇的time.Parse的使用方法

    时区 先写一段测试代码: const TIME_LAYOUT = "2006-01-02 15:04:05" func parseWithLocation(name string, timeStr string) (time.Time, error) { locationName := name if l, err := time.LoadLocation(locationName); err != nil { println(err.Error()) return time.Time

  • golang抓取网页并分析页面包含的链接方法

    1. 下载非标准的包,"golang.org/x/net/html" 2. 先安装git,使用git命令下载 git clone https://github.com/golang/net 3. 将net包,放到GOROOT路径下 比如: 我的是:GOROOT = E:\go\ 所以最终目录是:E:\go\src\golang.org\x\net 注意:如果没有golang.org和x文件夹,就创建 4. 创建fetch目录,在其下创建main.go文件,main.go文件代码内容如下

  • golang实现sql结果集以json格式输出的方法

    本文实例讲述了golang实现sql结果集以json格式输出的方法.分享给大家供大家参考,具体如下: 复制代码 代码如下: func getJSON(sqlString string) (string, error) {     stmt, err := db.Prepare(sqlString)     if err != nil {         return nil, err     }     defer stmt.Close()     rows, err := stmt.Query

  • Golang算法问题之数组按指定规则排序的方法分析

    本文实例讲述了Golang算法问题之数组按指定规则排序的方法.分享给大家供大家参考,具体如下: 给出一个二维数组,请将这个二维数组按第i列(i从1开始)排序,如果第i列相同,则对相同的行按第i+1列的元素排序, 如果第i+1列的元素也相同,则继续比较第i+2列,以此类推,直到最后一列.如果第i列到最后一列都相同,则按原序排列. 样例输入: 1,2,3 2,3,4 2,3,1 1,3,1 按第2列排序,输出: 1,2,3 2,3,1 1,3,1 2,3,4 代码实现: 复制代码 代码如下: pac

  • golang json.Marshal 特殊html字符被转义的解决方法

    go语言提供了json的编解码包,json字符串作为参数值传输时发现,json.Marshal生成json特殊字符<.>.&会被转义. type Test struct { Content string } func main() { t := new(Test) t.Content = "http://www.baidu.com?id=123&test=1" jsonByte, _ := json.Marshal(t) fmt.Println(string

  • golang不到30行代码实现依赖注入的方法

    本文介绍了golang不到30行代码实现依赖注入的方法,分享给大家,具体如下: 项目地址 go-di-demo 本项目依赖 使用标准库实现,无额外依赖 依赖注入的优势 用java的人对于spring框架一定不会陌生,spring核心就是一个IoC(控制反转/依赖注入)容器,带来一个很大的优势是解耦.一般只依赖容器,而不依赖具体的类,当你的类有修改时,最多需要改动一下容器相关代码,业务代码并不受影响. golang的依赖注入原理 总的来说和java的差不多,步骤如下:(golang不支持动态创建对

  • 详解golang执行Linux shell命令完整场景下的使用方法

    目录 1. 执行命令并获得输出结果 2. 将stdout和stderr分别处理 3. 异步执行命令 4. 执行时带上环境变量 5. 预先检查命令是否存在 6. 两个命令依次执行,管道通信 7. 按行读取输出内容 8. 获得exit code 1. 执行命令并获得输出结果 CombinedOutput() 执行程序返回 standard output and standard error func main() { cmd := exec.Command("ls", "-lah

  • JavaScript对象与JSON格式的转换及JSON.stringify和JSON.parse的使用方法

    目录 JSON处理 JSON.stringify stringify的限制 排除和替换 映射函数 格式化使用的空格数量 自定义toJSON方法 JSON.parse 使用reviver 总结 JSON处理 JSON(JavaScript Object Notation)是JavaScript表达值和对象的通用数据格式,其本质就是符合一定规范的字符串.由于JSON的优良特性,非常容易和其他语言进行数据交换,尤其在前后端交互方面.即使我们前端使用JavaScript,后端使用Java/PHP/Pyt

  • Golang判断struct/slice/map是否相等以及对比的方法总结

    目录 前言 == 的对比方式 == 适用的类型 slice和map使用 == channel使用 == struct结构体使用== reflect.DeepEqual() 和cmp.Equal() reflect.DeepEqual() cmp.Equal() cmp和DeepEqual的区别 性能比较 总结 前言 平时开发中对比两个struct或者map.slice是否相等是经常遇到的,有很多对比的方式,比如==,reflect.DeepEqual(),cmp.Equal()等也是经常容易混淆

  • GOLANG使用Context实现传值、超时和取消的方法

    GO1.7之后,新增了context.Context这个package,实现goroutine的管理. Context基本的用法参考GOLANG使用Context管理关联goroutine. 实际上,Context还有个非常重要的作用,就是设置超时.比如,如果我们有个API是这样设计的: type Packet interface { encoding.BinaryMarshaler encoding.BinaryUnmarshaler } type Stack struct { } func

随机推荐