python+opencv实现文字颜色识别与标定功能

最近接了一个比较简单的图像处理的单子,花了一点时间随便写了一下:

数据集客户没有是自己随便创建的:

程序如下:

"""
    Code creation time:September 11, 2021
    Author:PanBo
    Realize function:It mainly realizes the recognition and calibration of fonts with different colors
"""
import numpy as np
import cv2 as cv

font = cv.FONT_HERSHEY_SIMPLEX
lower_red = np.array([0, 120, 120])
hight_red = np.array([10, 255, 255])
#
lower_black = np.array([0, 0, 0])
height_black = np.array([144, 144, 144])

lower_yellow = np.array([10, 230, 230])
height_yellow = np.array([35, 255, 255])

frame = cv.imread("test.png")
cv.namedWindow("test_image", cv.WINDOW_AUTOSIZE)
cv.imshow('test_image', frame)

img_hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
mask_red = cv.inRange(img_hsv, lower_red, hight_red)
mask_black = cv.inRange(img_hsv, lower_black, height_black)
mask_yellow = cv.inRange(img_hsv, lower_yellow, height_yellow)

cv.namedWindow("mask_red", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_red", mask_red)
cv.namedWindow("mask_black", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_black", mask_black)
cv.namedWindow("mask_yellow", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_yellow", mask_yellow)

kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
mask_yellow = cv.morphologyEx(mask_yellow, cv.MORPH_OPEN, kernel)
cv.namedWindow("mask_yellow_open", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_yellow_open", mask_yellow)

mask_yellow = cv.morphologyEx(mask_yellow, cv.MORPH_CLOSE, kernel)
cv.namedWindow("mask_yellow_close", cv.WINDOW_AUTOSIZE)
cv.imshow("mask_yellow_close", mask_yellow)

mask_black = cv.medianBlur(mask_black, 3)
mask_red = cv.medianBlur(mask_red, 3)
mask_yellow = cv.medianBlur(mask_yellow, 3)
# cv.imshow(" ", mask_green)

cnts1, hierarchy1 = cv.findContours(mask_black, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
cnts2, hierarchy2 = cv.findContours(mask_red, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
cnts3, hierarchy3 = cv.findContours(mask_yellow, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)

for cnt in cnts1:
    (x, y, w, h) = cv.boundingRect(cnt)
    cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 0), 2)
    cv.putText(frame, 'black', (x, y-5), font, 0.7, (0, 0, 25),2)
for cnt in cnts2:
    (x, y, w, h) = cv.boundingRect(cnt)
    cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
    cv.putText(frame, 'red', (x, y - 5), font, 0.7, (0, 0, 255), 2)

for cnt in cnts3:
    (x, y, w, h) = cv.boundingRect(cnt)
    cv.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
    cv.putText(frame, 'yellow', (x, y - 5), font, 0.7, (0, 0, 255), 2)

cv.namedWindow("output", cv.WINDOW_AUTOSIZE)
cv.imshow("output", frame)
cv.waitKey(0)

首先给定字体颜色的上下阈值,然后提取出红色、黑色以及黄色的字体如下所示:

检测出原始图像中存在的红色字体的为四和五

检车出原始图像中存在的黑色字体是一和大

检测出原始图像中存在黄色字体的是七和九

但是通过yellow字体检测的过程中发现有一些椒盐噪声需要去剔除,因此做了一下中值滤波

但是效果不好有做一个形态学操作——开操作,结果如下:

但是发现了七和九发生了断层现象如果进行矩形标定的话会出现两个矩形,因此又做了一下形态学操作中的——闭操作结果如下:

经过闭操作我们发现七处的裂缝没有了但是九还是有,这个是由于设置的yellow上下阈值导致的。

后面进行矩形标定如下所示:

到此这篇关于python+opencv实现文字颜色识别与标定的文章就介绍到这了,更多相关python opencv文字颜色识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • Python OpenCV招商银行信用卡卡号识别的方法

    学在前面 从本篇博客起,我们将实际完成几个小案例,第一个就是银行卡号识别,预计本案例将写 5 篇左右的博客才可以完成,一起加油吧. 本文的目标是最终获取一套招商银行卡,0~9 数字的图,对于下图的数字,我们需要提取出来,便于后续模板匹配使用.不过下图中找到的数字不完整,需要找到尽量多的卡片,然后补齐这些数字. 提取卡片相关数字 先对上文中卡片中的数字进行相关提取操作,加载图片的灰度图,获取目标区域.在画板中模拟一下坐标区域,为了便于进行后续的操作. 具体代码如下: import cv2 as c

  • Python基于Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • Opencv+Python识别PCB板图片的步骤

    任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,模板匹配具有自身的局限性,主要表现在它只能进行平行移动,即原图像中的匹配目标不能发生旋转或大小变化. 事先准备好待检测PCB与其对应的模板: 子模版: 基本流程如下: 1.在整个图像区域发现与给定子图像匹配的小块区域 2.选取模板图像T(给定的子图像) 3.另外需要一个待检测的图像--源图

  • python基于opencv实现人脸识别

    将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad

  • python opencv人脸识别考勤系统的完整源码

    如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助! 运行结果如下: 代码如下: import wx import wx.grid from time import localtime,strftime import os import io import zlib import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv impo

  • 详解Python OpenCV数字识别案例

    前言 实践是检验真理的唯一标准. 因为觉得一板一眼地学习OpenCV太过枯燥,于是在网上找了一个以项目为导向的教程学习.话不多说,动手做起来. 一.案例介绍 提供信用卡上的数字模板: 要求:识别出信用卡上的数字,并将其直接打印在原图片上.虽然看起来很蠢,但既然可以将数字打印在图片上,说明已经成功识别数字,因此也可以将其转换为数字文本保存.车牌号识别等项目的思路与此案例类似. 示例: 原图 处理后的图 二.步骤 大致分为如下几个步骤: 1.模板读入 2.模板预处理,将模板数字分开,并排序 3.输入

  • python+opencv实现文字颜色识别与标定功能

    最近接了一个比较简单的图像处理的单子,花了一点时间随便写了一下: 数据集客户没有是自己随便创建的: 程序如下: """ Code creation time:September 11, 2021 Author:PanBo Realize function:It mainly realizes the recognition and calibration of fonts with different colors """ import nump

  • python opencv检测目标颜色的实例讲解

    实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核

  • 对python opencv 添加文字 cv2.putText 的各参数介绍

    如下所示: cv2.putText(img, str(i), (123,456)), font, 2, (0,255,0), 3) 各参数依次是:图片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细 其中字体可以选择 FONT_HERSHEY_SIMPLEX Python: cv.FONT_HERSHEY_SIMPLEX normal size sans-serif font FONT_HERSHEY_PLAIN Python: cv.FONT_HERSHEY_PLAIN small s

  • python+OpenCV实现车牌号码识别

    基于python+OpenCV的车牌号码识别,供大家参考,具体内容如下 车牌识别行业已具备一定的市场规模,在电子警察.公路卡口.停车场.商业管理.汽修服务等领域已取得了部分应用.一个典型的车辆牌照识别系统一般包括以下4个部分:车辆图像获取.车牌定位.车牌字符分割和车牌字符识别 1.车牌定位的主要工作是从获取的车辆图像中找到汽车牌照所在位置,并把车牌从该区域中准确地分割出来 这里所采用的是利用车牌的颜色(黄色.蓝色.绿色) 来进行定位 #定位车牌 def color_position(img,ou

  • Python+OpenCV实现基于颜色的目标识别

    目录 任务 主要代码 效果展示 学习了一点opencv的知识于是找了个小项目来实践一下.这里先说明一下,我的实现方法不见得是最好的(因为这只是一个用于练习的项目)仅作参考,也欢迎各位大佬指正. 任务 让摄像头识别到视野范围内的气球并返回每个气球的中心点坐标. 因为场地固定,背景单一,所以省下来很多操作和处理.于是就有两种解决思路:第一种是基于气球形状做轮廓提取,只要是闭合椭圆或圆形形就认为是目标物体:第二种是基于气球颜色,只要符合目标物体的颜色就认为是目标物体. 因为摄像头是装在四足机器人(它的

  • Python+OpenCV手势检测与识别Mediapipe基础篇

    目录 前言 项目效果图 认识Mediapipe 项目环境 代码 核心代码 视频帧率计算 完整代码 项目输出 结语 前言 本篇文章适合刚入门OpenCV的同学们.文章将介绍如何使用Python利用OpenCV图像捕捉,配合强大的Mediapipe库来实现手势检测与识别:本系列后续还会继续更新Mediapipe手势的各种衍生项目,还请多多关注! 项目效果图 视频捕捉帧数稳定在(25-30) 认识Mediapipe 项目的实现,核心是强大的Mediapipe ,它是google的一个开源项目: 功能

  • 浅谈python opencv对图像颜色通道进行加减操作溢出

    由于opencv读入图片数据类型是uint8类型,直接加减会导致数据溢出现象 (1)用Numpy操作 可以先将图片数据类型转换成int类型进行计算, data=np.array(image,dtype='int') 经过处理后(如:遍历,将大于255的置为255,小于0的置为0) 再将图片还原成uint8类型 data=np.array(image,dtype='uint8') 注意: (1)如果直接相加,那么 当像素值 > 255时,结果为对256取模的结果,例如:(240+66) % 256

  • python OpenCV实现答题卡识别判卷

    本文实例为大家分享了python OpenCV实现答题卡识别判卷的具体代码,供大家参考,具体内容如下 完整代码: #导入工具包 import numpy as np import argparse import imutils import cv2 # 设置参数 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", default="./images/test_03.png"

  • Python+OpenCV进行人脸面部表情识别

    目录 前言 一.图片预处理 二.数据集划分 三.识别笑脸 四.Dlib提取人脸特征识别笑脸和非笑脸 前言 环境搭建可查看Python人脸识别微笑检测 数据集可在https://inc.ucsd.edu/mplab/wordpress/index.html%3Fp=398.html获取 数据如下: 一.图片预处理 import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv import os

  • Python Opencv使用ann神经网络识别手写数字功能

    opencv中也提供了一种类似于Keras的神经网络,即为ann,这种神经网络的使用方法与Keras的很接近.关于mnist数据的解析,读者可以自己从网上下载相应压缩文件,用python自己编写解析代码,由于这里主要研究knn算法,为了图简单,直接使用Keras的mnist手写数字解析模块.本次代码运行环境为:python 3.6.8opencv-python 4.4.0.46opencv-contrib-python 4.4.0.46 下面的代码为使用ann进行模型的训练: from kera

随机推荐