keras自动编码器实现系列之卷积自动编码器操作

图片的自动编码很容易就想到用卷积神经网络做为编码-解码器。在实际的操作中,

也经常使用卷积自动编码器去解决图像编码问题,而且非常有效。

下面通过**keras**完成简单的卷积自动编码。 编码器有堆叠的卷积层和池化层(max pooling用于空间降采样)组成。 对应的解码器由卷积层和上采样层组成。

@requires_authorization
# -*- coding:utf-8 -*-

from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model
from keras import backend as K
import os

## 网络结构 ##
input_img = Input(shape=(28,28,1)) # Tensorflow后端, 注意要用channel_last
# 编码器部分
x = Conv2D(16, (3,3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8,(3,3), activation='relu', padding='same')(x)
x = MaxPooling2D((2,2), padding='same')(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2,2), padding='same')(x)

# 解码器部分
x = Conv2D(8, (3,3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3,3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = Model(input_img, decoded)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

# 得到编码层的输出
encoder_model = Model(inputs=autoencoder.input, outputs=autoencoder.get_layer('encoder_out').output)

## 导入数据, 使用常用的手写识别数据集
def load_mnist(dataset_name):
'''
load the data
'''
  data_dir = os.path.join("./data", dataset_name)
  f = np.load(os.path.join(data_dir, 'mnist.npz'))
  train_data = f['train'].T
  trX = train_data.reshape((-1, 28, 28, 1)).astype(np.float32)
  trY = f['train_labels'][-1].astype(np.float32)
  test_data = f['test'].T
  teX = test_data.reshape((-1, 28, 28, 1)).astype(np.float32)
  teY = f['test_labels'][-1].astype(np.float32)

  # one-hot
  # y_vec = np.zeros((len(y), 10), dtype=np.float32)
  # for i, label in enumerate(y):
  #   y_vec[i, y[i]] = 1
  # keras.utils里带的有one-hot的函数, 就直接用那个了
  return trX / 255., trY, teX/255., teY

# 开始导入数据
x_train, _ , x_test, _= load_mnist('mnist')

# 可视化训练结果, 我们打开终端, 使用tensorboard
# tensorboard --logdir=/tmp/autoencoder # 注意这里是打开一个终端, 在终端里运行

# 训练模型, 并且在callbacks中使用tensorBoard实例, 写入训练日志 http://0.0.0.0:6006
from keras.callbacks import TensorBoard
autoencoder.fit(x_train, x_train,
        epochs=50,
        batch_size=128,
        shuffle=True,
        validation_data=(x_test, x_test),
        callbacks=[TensorBoard(log_dir='/tmp/autoencoder')])

# 重建图片
import matplotlib.pyplot as plt
decoded_imgs = autoencoder.predict(x_test)
encoded_imgs = encoder_model.predict(x_test)
n = 10
plt.figure(figsize=(20, 4))
for i in range(n):
  k = i + 1
  # 画原始图片
  ax = plt.subplot(2, n, k)
  plt.imshow(x_test[k].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  # 画重建图片
  ax = plt.subplot(2, n, k + n)
  plt.imshow(decoded_imgs[i].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()

# 编码得到的特征
n = 10
plt.figure(figsize=(20, 8))
for i in range(n):
  k = i + 1
  ax = plt.subplot(1, n, k)
  plt.imshow(encoded[k].reshape(4, 4 * 8).T)
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get_yaxis().set_visible(False)
plt.show()        

补充知识:keras搬砖系列-单层卷积自编码器

考试成绩出来了,竟然有一门出奇的差,只是有点意外。

觉得应该不错的,竟然考差了,它估计写了个随机数吧。

头文件

from keras.layers import Input,Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt 

导入数据

(X_train,_),(X_test,_) = mnist.load_data()

X_train = X_train.astype('float32')/255.
X_test = X_test.astype('float32')/255.
X_train = X_train.reshape((len(X_train),-1))
X_test = X_test.reshape((len(X_test),-1))

这里的X_train和X_test的维度分别为(60000L,784L),(10000L,784L)

这里进行了归一化,将所有的数值除上255.

设定编码的维数与输入数据的维数

encoding_dim = 32

input_img = Input(shape=(784,))

构建模型

encoded = Dense(encoding_dim,activation='relu')(input_img)
decoded = Dense(784,activation='relu')(encoded)

autoencoder = Model(inputs = input_img,outputs=decoded)
encoder = Model(inputs=input_img,outputs=encoded)

encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
deconder = Model(inputs=encoded_input,outputs = decoder_layer(encoded_input))

模型编译

autoencoder.compile(optimizer='adadelta',loss='binary_crossentropy')

模型训练

autoencoder.fit(X_train,X_train,epochs=50,batch_size=256,shuffle=True,validation_data=(X_test,X_test))

预测

encoded_imgs = encoder.predict(X_test)

decoded_imgs = deconder.predict(encoded_imgs)

数据可视化

n = 10
for i in range(n):
 ax = plt.subplot(2,n,i+1)
 plt.imshow(X_test[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)

 ax = plt.subplot(2,n,i+1+n)
 plt.imshow(decoded_imgs[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

完成代码

from keras.layers import Input,Dense
from keras.models import Model
from keras.datasets import mnist
import numpy as np
import matplotlib.pyplot as plt 

(X_train,_),(X_test,_) = mnist.load_data()

X_train = X_train.astype('float32')/255.
X_test = X_test.astype('float32')/255.
X_train = X_train.reshape((len(X_train),-1))
X_test = X_test.reshape((len(X_test),-1))

encoding_dim = 32
input_img = Input(shape=(784,))

encoded = Dense(encoding_dim,activation='relu')(input_img)
decoded = Dense(784,activation='relu')(encoded)

autoencoder = Model(inputs = input_img,outputs=decoded)
encoder = Model(inputs=input_img,outputs=encoded)

encoded_input = Input(shape=(encoding_dim,))
decoder_layer = autoencoder.layers[-1]
deconder = Model(inputs=encoded_input,outputs = decoder_layer(encoded_input))

autoencoder.compile(optimizer='adadelta',loss='binary_crossentropy')
autoencoder.fit(X_train,X_train,epochs=50,batch_size=256,shuffle=True,validation_data=(X_test,X_test))

encoded_imgs = encoder.predict(X_test)
decoded_imgs = deconder.predict(encoded_imgs)

##via
n = 10
for i in range(n):
 ax = plt.subplot(2,n,i+1)
 plt.imshow(X_test[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)

 ax = plt.subplot(2,n,i+1+n)
 plt.imshow(decoded_imgs[i].reshape(28,28))
 plt.gray()
 ax.get_xaxis().set_visible(False)
 ax.get_yaxis().set_visible(False)
plt.show()

以上这篇keras自动编码器实现系列之卷积自动编码器操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras中的卷积层&池化层的用法

    卷积层 创建卷积层 首先导入keras中的模块 from keras.layers import Conv2D 卷积层的格式及参数: Conv2D(filters, kernel_size, strides, padding, activation='relu', input_shape) filters: 过滤器数量 kernel_size:指定卷积窗口的高和宽的数字 strides: 卷积stride,如果不指定任何值,则strides设为1 padding: 选项包括'valid'和'sa

  • 在keras里实现自定义上采样层

    Keras里的UpSampling2D层不是中的双线性内插,而是简单的重复图像.这点和pytorch不一样,pytorch默认使用的是双线性内插. 同样:这里仍然使用的是keras而不是tf.keras. keras里UpSampling2D的部分定义说明如下: class UpSampling2D(Layer): """Upsampling layer for 2D inputs. Repeats the rows and columns of the data by si

  • keras CNN卷积核可视化,热度图教程

    卷积核可视化 import matplotlib.pyplot as plt import numpy as np from keras import backend as K from keras.models import load_model # 将浮点图像转换成有效图像 def deprocess_image(x): # 对张量进行规范化 x -= x.mean() x /= (x.std() + 1e-5) x *= 0.1 x += 0.5 x = np.clip(x, 0, 1)

  • keras自动编码器实现系列之卷积自动编码器操作

    图片的自动编码很容易就想到用卷积神经网络做为编码-解码器.在实际的操作中, 也经常使用卷积自动编码器去解决图像编码问题,而且非常有效. 下面通过**keras**完成简单的卷积自动编码. 编码器有堆叠的卷积层和池化层(max pooling用于空间降采样)组成. 对应的解码器由卷积层和上采样层组成. @requires_authorization # -*- coding:utf-8 -*- from keras.layers import Input, Dense, Conv2D, MaxPo

  • Keras模型转成tensorflow的.pb操作

    Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署.直接上代码 from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet import preprocess_input from keras.preprocessi

  • keras 模型参数,模型保存,中间结果输出操作

    我就废话不多说了,大家还是直接看代码吧~ ''' Created on 2018-4-16 ''' import keras from keras.models import Sequential from keras.layers import Dense from keras.models import Model from keras.callbacks import ModelCheckpoint,Callback import numpy as np import tflearn im

  • keras和tensorflow使用fit_generator 批次训练操作

    fit_generator 是 keras 提供的用来进行批次训练的函数,使用方法如下: model.fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=F

  • pytorch 实现变分自动编码器的操作

    本来以为自动编码器是很简单的东西,但是也是看了好多资料仍然不太懂它的原理.先把代码记录下来,有时间好好研究. 这个例子是用MNIST数据集生成为例子 # -*- coding: utf-8 -*- """ Created on Fri Oct 12 11:42:19 2018 @author: www """ import os import torch from torch.autograd import Variable import tor

  • Pytorch 卷积中的 Input Shape用法

    先看Pytorch中的卷积 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, C_in,H,W),输出尺度(N,C_out,H_out,W_out)的计算方式 这里比较奇怪的是这个卷积层居然没有定义input shape,输入尺寸明明是:(N, C_in, H,W),但是定义中却只需

  • Keras神经网络efficientnet模型搭建yolov3目标检测平台

    目录 什么是EfficientNet模型 源码下载 EfficientNet模型的实现思路 1.EfficientNet模型的特点 2.EfficientNet网络的结构 EfficientNet的代码构建 1.模型代码的构建 2.Yolov3上的应用 什么是EfficientNet模型 2019年,谷歌新出EfficientNet,在其它网络的基础上,大幅度的缩小了参数的同时提高了预测准确度,简直太强了,我这样的强者也要跟着做下去 EfficientNet,网络如其名,这个网络非常的有效率,怎

  • Python实现使用卷积提取图片轮廓功能示例

    本文实例讲述了Python实现使用卷积提取图片轮廓功能.分享给大家供大家参考,具体如下: 一.实例描述 将彩色的图片生成带边缘化信息的图片. 本例中先载入一个图片,然后使用一个"3通道输入,1通道输出的3*3卷积核"(即sobel算子),最后使用卷积函数输出生成的结果. 二.代码 ''''' 载入图片并显示 首先将图片放到代码的同级目录下,通过imread载入,然后将其显示并打印出来 ''' import matplotlib.pyplot as plt # plt 用于显示图片 im

  • pytorch中的卷积和池化计算方式详解

    TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小:而nn输出大小可以通过padding进行改变 nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算 class torch.nn.MaxPool2d(kernel_size, stride=Non

  • keras得到每层的系数方式

    使用keras搭建好一个模型,训练好,怎么得到每层的系数呢: weights = np.array(model.get_weights()) print(weights) print(weights[0].shape) print(weights[1].shape) 这样系数就被存放到一个np中了. 补充知识:使用keras框架编写的深度模型 输出及每一层的特征可视化 使用训练好的模型进行预测的时候,为分析效果,通常需要对特征提取过程中的特征映射做可视化操作 本文以keras为例,对特征可视化操

随机推荐