Python 照片人物背景替换的实现方法

目录
  • 前言
  • 项目说明
    • 项目结构
    • 数据准备
    • 替换背景图代码
    • 代码说明
    • 验证一下效果
  • 总结

前言

本文的github仓库地址为: 替换照片人物背景项目(模型文件过大,不在仓库中)

由于模型文件过大,没放在仓库中,本文下面有模型下载地址。

项目说明

项目结构

我们先看一下项目的结构,如图:

其中,model文件夹放的是模型文件,模型文件的下载地址为:模型下载地址

下载该模型放到model文件夹下。

依赖文件-requirements.txt,说明一下,pytorch的安装需要使用官网给出的,避免显卡驱动对应不上。

依赖文件如下:

kornia==0.4.1
tensorboard==2.3.0
torch==1.7.0
torchvision==0.8.1
tqdm==4.51.0
opencv-python==4.4.0.44
onnxruntime==1.6.0

数据准备

我们需要准备一张照片以及照片的背景图,和你需要替换的图片。我这边选择的是BackgroundMattingV2给出的一些参考图,原始图与背景图如下:

新的背景图(我随便找的)如下:

替换背景图代码

不废话了,上核心代码。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/11/14 21:24
# @Author  : 剑客阿良_ALiang
# @Site    :
# @File    : inferance_hy.py
import argparse
import torch
import os

from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms as T
from torchvision.transforms.functional import to_pil_image
from threading import Thread
from tqdm import tqdm
from torch.utils.data import Dataset
from PIL import Image
from typing import Callable, Optional, List, Tuple
import glob
from torch import nn
from torchvision.models.resnet import ResNet, Bottleneck
from torch import Tensor
import torchvision
import numpy as np
import cv2
import uuid

# --------------- hy ---------------
class HomographicAlignment:
    """
    Apply homographic alignment on background to match with the source image.
    """

    def __init__(self):
        self.detector = cv2.ORB_create()
        self.matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE)

    def __call__(self, src, bgr):
        src = np.asarray(src)
        bgr = np.asarray(bgr)

        keypoints_src, descriptors_src = self.detector.detectAndCompute(src, None)
        keypoints_bgr, descriptors_bgr = self.detector.detectAndCompute(bgr, None)

        matches = self.matcher.match(descriptors_bgr, descriptors_src, None)
        matches.sort(key=lambda x: x.distance, reverse=False)
        num_good_matches = int(len(matches) * 0.15)
        matches = matches[:num_good_matches]

        points_src = np.zeros((len(matches), 2), dtype=np.float32)
        points_bgr = np.zeros((len(matches), 2), dtype=np.float32)
        for i, match in enumerate(matches):
            points_src[i, :] = keypoints_src[match.trainIdx].pt
            points_bgr[i, :] = keypoints_bgr[match.queryIdx].pt

        H, _ = cv2.findHomography(points_bgr, points_src, cv2.RANSAC)

        h, w = src.shape[:2]
        bgr = cv2.warpPerspective(bgr, H, (w, h))
        msk = cv2.warpPerspective(np.ones((h, w)), H, (w, h))

        # For areas that is outside of the background,
        # We just copy pixels from the source.
        bgr[msk != 1] = src[msk != 1]

        src = Image.fromarray(src)
        bgr = Image.fromarray(bgr)

        return src, bgr

class Refiner(nn.Module):
    # For TorchScript export optimization.
    __constants__ = ['kernel_size', 'patch_crop_method', 'patch_replace_method']

    def __init__(self,
                 mode: str,
                 sample_pixels: int,
                 threshold: float,
                 kernel_size: int = 3,
                 prevent_oversampling: bool = True,
                 patch_crop_method: str = 'unfold',
                 patch_replace_method: str = 'scatter_nd'):
        super().__init__()
        assert mode in ['full', 'sampling', 'thresholding']
        assert kernel_size in [1, 3]
        assert patch_crop_method in ['unfold', 'roi_align', 'gather']
        assert patch_replace_method in ['scatter_nd', 'scatter_element']

        self.mode = mode
        self.sample_pixels = sample_pixels
        self.threshold = threshold
        self.kernel_size = kernel_size
        self.prevent_oversampling = prevent_oversampling
        self.patch_crop_method = patch_crop_method
        self.patch_replace_method = patch_replace_method

        channels = [32, 24, 16, 12, 4]
        self.conv1 = nn.Conv2d(channels[0] + 6 + 4, channels[1], kernel_size, bias=False)
        self.bn1 = nn.BatchNorm2d(channels[1])
        self.conv2 = nn.Conv2d(channels[1], channels[2], kernel_size, bias=False)
        self.bn2 = nn.BatchNorm2d(channels[2])
        self.conv3 = nn.Conv2d(channels[2] + 6, channels[3], kernel_size, bias=False)
        self.bn3 = nn.BatchNorm2d(channels[3])
        self.conv4 = nn.Conv2d(channels[3], channels[4], kernel_size, bias=True)
        self.relu = nn.ReLU(True)

    def forward(self,
                src: torch.Tensor,
                bgr: torch.Tensor,
                pha: torch.Tensor,
                fgr: torch.Tensor,
                err: torch.Tensor,
                hid: torch.Tensor):
        H_full, W_full = src.shape[2:]
        H_half, W_half = H_full // 2, W_full // 2
        H_quat, W_quat = H_full // 4, W_full // 4

        src_bgr = torch.cat([src, bgr], dim=1)

        if self.mode != 'full':
            err = F.interpolate(err, (H_quat, W_quat), mode='bilinear', align_corners=False)
            ref = self.select_refinement_regions(err)
            idx = torch.nonzero(ref.squeeze(1))
            idx = idx[:, 0], idx[:, 1], idx[:, 2]

            if idx[0].size(0) > 0:
                x = torch.cat([hid, pha, fgr], dim=1)
                x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)
                x = self.crop_patch(x, idx, 2, 3 if self.kernel_size == 3 else 0)

                y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)
                y = self.crop_patch(y, idx, 2, 3 if self.kernel_size == 3 else 0)

                x = self.conv1(torch.cat([x, y], dim=1))
                x = self.bn1(x)
                x = self.relu(x)
                x = self.conv2(x)
                x = self.bn2(x)
                x = self.relu(x)

                x = F.interpolate(x, 8 if self.kernel_size == 3 else 4, mode='nearest')
                y = self.crop_patch(src_bgr, idx, 4, 2 if self.kernel_size == 3 else 0)

                x = self.conv3(torch.cat([x, y], dim=1))
                x = self.bn3(x)
                x = self.relu(x)
                x = self.conv4(x)

                out = torch.cat([pha, fgr], dim=1)
                out = F.interpolate(out, (H_full, W_full), mode='bilinear', align_corners=False)
                out = self.replace_patch(out, x, idx)
                pha = out[:, :1]
                fgr = out[:, 1:]
            else:
                pha = F.interpolate(pha, (H_full, W_full), mode='bilinear', align_corners=False)
                fgr = F.interpolate(fgr, (H_full, W_full), mode='bilinear', align_corners=False)
        else:
            x = torch.cat([hid, pha, fgr], dim=1)
            x = F.interpolate(x, (H_half, W_half), mode='bilinear', align_corners=False)
            y = F.interpolate(src_bgr, (H_half, W_half), mode='bilinear', align_corners=False)
            if self.kernel_size == 3:
                x = F.pad(x, (3, 3, 3, 3))
                y = F.pad(y, (3, 3, 3, 3))

            x = self.conv1(torch.cat([x, y], dim=1))
            x = self.bn1(x)
            x = self.relu(x)
            x = self.conv2(x)
            x = self.bn2(x)
            x = self.relu(x)

            if self.kernel_size == 3:
                x = F.interpolate(x, (H_full + 4, W_full + 4))
                y = F.pad(src_bgr, (2, 2, 2, 2))
            else:
                x = F.interpolate(x, (H_full, W_full), mode='nearest')
                y = src_bgr

            x = self.conv3(torch.cat([x, y], dim=1))
            x = self.bn3(x)
            x = self.relu(x)
            x = self.conv4(x)

            pha = x[:, :1]
            fgr = x[:, 1:]
            ref = torch.ones((src.size(0), 1, H_quat, W_quat), device=src.device, dtype=src.dtype)

        return pha, fgr, ref

    def select_refinement_regions(self, err: torch.Tensor):
        """
        Select refinement regions.
        Input:
            err: error map (B, 1, H, W)
        Output:
            ref: refinement regions (B, 1, H, W). FloatTensor. 1 is selected, 0 is not.
        """
        if self.mode == 'sampling':
            # Sampling mode.
            b, _, h, w = err.shape
            err = err.view(b, -1)
            idx = err.topk(self.sample_pixels // 16, dim=1, sorted=False).indices
            ref = torch.zeros_like(err)
            ref.scatter_(1, idx, 1.)
            if self.prevent_oversampling:
                ref.mul_(err.gt(0).float())
            ref = ref.view(b, 1, h, w)
        else:
            # Thresholding mode.
            ref = err.gt(self.threshold).float()
        return ref

    def crop_patch(self,
                   x: torch.Tensor,
                   idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
                   size: int,
                   padding: int):
        """
        Crops selected patches from image given indices.
        Inputs:
            x: image (B, C, H, W).
            idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.
            size: center size of the patch, also stride of the crop.
            padding: expansion size of the patch.
        Output:
            patch: (P, C, h, w), where h = w = size + 2 * padding.
        """
        if padding != 0:
            x = F.pad(x, (padding,) * 4)

        if self.patch_crop_method == 'unfold':
            # Use unfold. Best performance for PyTorch and TorchScript.
            return x.permute(0, 2, 3, 1) \
                .unfold(1, size + 2 * padding, size) \
                .unfold(2, size + 2 * padding, size)[idx[0], idx[1], idx[2]]
        elif self.patch_crop_method == 'roi_align':
            # Use roi_align. Best compatibility for ONNX.
            idx = idx[0].type_as(x), idx[1].type_as(x), idx[2].type_as(x)
            b = idx[0]
            x1 = idx[2] * size - 0.5
            y1 = idx[1] * size - 0.5
            x2 = idx[2] * size + size + 2 * padding - 0.5
            y2 = idx[1] * size + size + 2 * padding - 0.5
            boxes = torch.stack([b, x1, y1, x2, y2], dim=1)
            return torchvision.ops.roi_align(x, boxes, size + 2 * padding, sampling_ratio=1)
        else:
            # Use gather. Crops out patches pixel by pixel.
            idx_pix = self.compute_pixel_indices(x, idx, size, padding)
            pat = torch.gather(x.view(-1), 0, idx_pix.view(-1))
            pat = pat.view(-1, x.size(1), size + 2 * padding, size + 2 * padding)
            return pat

    def replace_patch(self,
                      x: torch.Tensor,
                      y: torch.Tensor,
                      idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor]):
        """
        Replaces patches back into image given index.
        Inputs:
            x: image (B, C, H, W)
            y: patches (P, C, h, w)
            idx: selection indices Tuple[(P,), (P,), (P,)] where the 3 values are (B, H, W) index.
        Output:
            image: (B, C, H, W), where patches at idx locations are replaced with y.
        """
        xB, xC, xH, xW = x.shape
        yB, yC, yH, yW = y.shape
        if self.patch_replace_method == 'scatter_nd':
            # Use scatter_nd. Best performance for PyTorch and TorchScript. Replacing patch by patch.
            x = x.view(xB, xC, xH // yH, yH, xW // yW, yW).permute(0, 2, 4, 1, 3, 5)
            x[idx[0], idx[1], idx[2]] = y
            x = x.permute(0, 3, 1, 4, 2, 5).view(xB, xC, xH, xW)
            return x
        else:
            # Use scatter_element. Best compatibility for ONNX. Replacing pixel by pixel.
            idx_pix = self.compute_pixel_indices(x, idx, size=4, padding=0)
            return x.view(-1).scatter_(0, idx_pix.view(-1), y.view(-1)).view(x.shape)

    def compute_pixel_indices(self,
                              x: torch.Tensor,
                              idx: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
                              size: int,
                              padding: int):
        """
        Compute selected pixel indices in the tensor.
        Used for crop_method == 'gather' and replace_method == 'scatter_element', which crop and replace pixel by pixel.
        Input:
            x: image: (B, C, H, W)
            idx: selection indices Tuple[(P,), (P,), (P,),], where the 3 values are (B, H, W) index.
            size: center size of the patch, also stride of the crop.
            padding: expansion size of the patch.
        Output:
            idx: (P, C, O, O) long tensor where O is the output size: size + 2 * padding, P is number of patches.
                 the element are indices pointing to the input x.view(-1).
        """
        B, C, H, W = x.shape
        S, P = size, padding
        O = S + 2 * P
        b, y, x = idx
        n = b.size(0)
        c = torch.arange(C)
        o = torch.arange(O)
        idx_pat = (c * H * W).view(C, 1, 1).expand([C, O, O]) + (o * W).view(1, O, 1).expand([C, O, O]) + o.view(1, 1,
                                                                                                                 O).expand(
            [C, O, O])
        idx_loc = b * W * H + y * W * S + x * S
        idx_pix = idx_loc.view(-1, 1, 1, 1).expand([n, C, O, O]) + idx_pat.view(1, C, O, O).expand([n, C, O, O])
        return idx_pix

def load_matched_state_dict(model, state_dict, print_stats=True):
    """
    Only loads weights that matched in key and shape. Ignore other weights.
    """
    num_matched, num_total = 0, 0
    curr_state_dict = model.state_dict()
    for key in curr_state_dict.keys():
        num_total += 1
        if key in state_dict and curr_state_dict[key].shape == state_dict[key].shape:
            curr_state_dict[key] = state_dict[key]
            num_matched += 1
    model.load_state_dict(curr_state_dict)
    if print_stats:
        print(f'Loaded state_dict: {num_matched}/{num_total} matched')

def _make_divisible(v: float, divisor: int, min_value: Optional[int] = None) -> int:
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

class ConvNormActivation(torch.nn.Sequential):
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            kernel_size: int = 3,
            stride: int = 1,
            padding: Optional[int] = None,
            groups: int = 1,
            norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
            activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
            dilation: int = 1,
            inplace: bool = True,
    ) -> None:
        if padding is None:
            padding = (kernel_size - 1) // 2 * dilation
        layers = [torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding,
                                  dilation=dilation, groups=groups, bias=norm_layer is None)]
        if norm_layer is not None:
            layers.append(norm_layer(out_channels))
        if activation_layer is not None:
            layers.append(activation_layer(inplace=inplace))
        super().__init__(*layers)
        self.out_channels = out_channels

class InvertedResidual(nn.Module):
    def __init__(
            self,
            inp: int,
            oup: int,
            stride: int,
            expand_ratio: int,
            norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers: List[nn.Module] = []
        if expand_ratio != 1:
            # pw
            layers.append(ConvNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer,
                                             activation_layer=nn.ReLU6))
        layers.extend([
            # dw
            ConvNormActivation(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer,
                               activation_layer=nn.ReLU6),
            # pw-linear
            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
            norm_layer(oup),
        ])
        self.conv = nn.Sequential(*layers)
        self.out_channels = oup
        self._is_cn = stride > 1

    def forward(self, x: Tensor) -> Tensor:
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)

class MobileNetV2(nn.Module):
    def __init__(
            self,
            num_classes: int = 1000,
            width_mult: float = 1.0,
            inverted_residual_setting: Optional[List[List[int]]] = None,
            round_nearest: int = 8,
            block: Optional[Callable[..., nn.Module]] = None,
            norm_layer: Optional[Callable[..., nn.Module]] = None
    ) -> None:
        """
        MobileNet V2 main class
        Args:
            num_classes (int): Number of classes
            width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
            inverted_residual_setting: Network structure
            round_nearest (int): Round the number of channels in each layer to be a multiple of this number
            Set to 1 to turn off rounding
            block: Module specifying inverted residual building block for mobilenet
            norm_layer: Module specifying the normalization layer to use
        """
        super(MobileNetV2, self).__init__()

        if block is None:
            block = InvertedResidual

        if norm_layer is None:
            norm_layer = nn.BatchNorm2d

        input_channel = 32
        last_channel = 1280

        if inverted_residual_setting is None:
            inverted_residual_setting = [
                # t, c, n, s
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]

        # only check the first element, assuming user knows t,c,n,s are required
        if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
            raise ValueError("inverted_residual_setting should be non-empty "
                             "or a 4-element list, got {}".format(inverted_residual_setting))

        # building first layer
        input_channel = _make_divisible(input_channel * width_mult, round_nearest)
        self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
        features: List[nn.Module] = [ConvNormActivation(3, input_channel, stride=2, norm_layer=norm_layer,
                                                        activation_layer=nn.ReLU6)]
        # building inverted residual blocks
        for t, c, n, s in inverted_residual_setting:
            output_channel = _make_divisible(c * width_mult, round_nearest)
            for i in range(n):
                stride = s if i == 0 else 1
                features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
                input_channel = output_channel
        # building last several layers
        features.append(ConvNormActivation(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer,
                                           activation_layer=nn.ReLU6))
        # make it nn.Sequential
        self.features = nn.Sequential(*features)

        # building classifier
        self.classifier = nn.Sequential(
            nn.Dropout(0.2),
            nn.Linear(self.last_channel, num_classes),
        )

        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # This exists since TorchScript doesn't support inheritance, so the superclass method
        # (this one) needs to have a name other than `forward` that can be accessed in a subclass
        x = self.features(x)
        # Cannot use "squeeze" as batch-size can be 1
        x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
        x = torch.flatten(x, 1)
        x = self.classifier(x)
        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)

class MobileNetV2Encoder(MobileNetV2):
    """
    MobileNetV2Encoder inherits from torchvision's official MobileNetV2. It is modified to
    use dilation on the last block to maintain output stride 16, and deleted the
    classifier block that was originally used for classification. The forward method
    additionally returns the feature maps at all resolutions for decoder's use.
    """

    def __init__(self, in_channels, norm_layer=None):
        super().__init__()

        # Replace first conv layer if in_channels doesn't match.
        if in_channels != 3:
            self.features[0][0] = nn.Conv2d(in_channels, 32, 3, 2, 1, bias=False)

        # Remove last block
        self.features = self.features[:-1]

        # Change to use dilation to maintain output stride = 16
        self.features[14].conv[1][0].stride = (1, 1)
        for feature in self.features[15:]:
            feature.conv[1][0].dilation = (2, 2)
            feature.conv[1][0].padding = (2, 2)

        # Delete classifier
        del self.classifier

    def forward(self, x):
        x0 = x  # 1/1
        x = self.features[0](x)
        x = self.features[1](x)
        x1 = x  # 1/2
        x = self.features[2](x)
        x = self.features[3](x)
        x2 = x  # 1/4
        x = self.features[4](x)
        x = self.features[5](x)
        x = self.features[6](x)
        x3 = x  # 1/8
        x = self.features[7](x)
        x = self.features[8](x)
        x = self.features[9](x)
        x = self.features[10](x)
        x = self.features[11](x)
        x = self.features[12](x)
        x = self.features[13](x)
        x = self.features[14](x)
        x = self.features[15](x)
        x = self.features[16](x)
        x = self.features[17](x)
        x4 = x  # 1/16
        return x4, x3, x2, x1, x0

class Decoder(nn.Module):

    def __init__(self, channels, feature_channels):
        super().__init__()
        self.conv1 = nn.Conv2d(feature_channels[0] + channels[0], channels[1], 3, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(channels[1])
        self.conv2 = nn.Conv2d(feature_channels[1] + channels[1], channels[2], 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(channels[2])
        self.conv3 = nn.Conv2d(feature_channels[2] + channels[2], channels[3], 3, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(channels[3])
        self.conv4 = nn.Conv2d(feature_channels[3] + channels[3], channels[4], 3, padding=1)
        self.relu = nn.ReLU(True)

    def forward(self, x4, x3, x2, x1, x0):
        x = F.interpolate(x4, size=x3.shape[2:], mode='bilinear', align_corners=False)
        x = torch.cat([x, x3], dim=1)
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = F.interpolate(x, size=x2.shape[2:], mode='bilinear', align_corners=False)
        x = torch.cat([x, x2], dim=1)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)
        x = F.interpolate(x, size=x1.shape[2:], mode='bilinear', align_corners=False)
        x = torch.cat([x, x1], dim=1)
        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu(x)
        x = F.interpolate(x, size=x0.shape[2:], mode='bilinear', align_corners=False)
        x = torch.cat([x, x0], dim=1)
        x = self.conv4(x)
        return x

class ASPPPooling(nn.Sequential):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        super(ASPPPooling, self).__init__(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU())

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        size = x.shape[-2:]
        for mod in self:
            x = mod(x)
        return F.interpolate(x, size=size, mode='bilinear', align_corners=False)

class ASPPConv(nn.Sequential):
    def __init__(self, in_channels: int, out_channels: int, dilation: int) -> None:
        modules = [
            nn.Conv2d(in_channels, out_channels, 3, padding=dilation, dilation=dilation, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()
        ]
        super(ASPPConv, self).__init__(*modules)

class ASPP(nn.Module):
    def __init__(self, in_channels: int, atrous_rates: List[int], out_channels: int = 256) -> None:
        super(ASPP, self).__init__()
        modules = []
        modules.append(nn.Sequential(
            nn.Conv2d(in_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU()))

        rates = tuple(atrous_rates)
        for rate in rates:
            modules.append(ASPPConv(in_channels, out_channels, rate))

        modules.append(ASPPPooling(in_channels, out_channels))

        self.convs = nn.ModuleList(modules)

        self.project = nn.Sequential(
            nn.Conv2d(len(self.convs) * out_channels, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(),
            nn.Dropout(0.5))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        _res = []
        for conv in self.convs:
            _res.append(conv(x))
        res = torch.cat(_res, dim=1)
        return self.project(res)

class ResNetEncoder(ResNet):
    layers = {
        'resnet50': [3, 4, 6, 3],
        'resnet101': [3, 4, 23, 3],
    }

    def __init__(self, in_channels, variant='resnet101', norm_layer=None):
        super().__init__(
            block=Bottleneck,
            layers=self.layers[variant],
            replace_stride_with_dilation=[False, False, True],
            norm_layer=norm_layer)

        # Replace first conv layer if in_channels doesn't match.
        if in_channels != 3:
            self.conv1 = nn.Conv2d(in_channels, 64, 7, 2, 3, bias=False)

        # Delete fully-connected layer
        del self.avgpool
        del self.fc

    def forward(self, x):
        x0 = x  # 1/1
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x1 = x  # 1/2
        x = self.maxpool(x)
        x = self.layer1(x)
        x2 = x  # 1/4
        x = self.layer2(x)
        x3 = x  # 1/8
        x = self.layer3(x)
        x = self.layer4(x)
        x4 = x  # 1/16
        return x4, x3, x2, x1, x0

class Base(nn.Module):
    """
    A generic implementation of the base encoder-decoder network inspired by DeepLab.
    Accepts arbitrary channels for input and output.
    """

    def __init__(self, backbone: str, in_channels: int, out_channels: int):
        super().__init__()
        assert backbone in ["resnet50", "resnet101", "mobilenetv2"]
        if backbone in ['resnet50', 'resnet101']:
            self.backbone = ResNetEncoder(in_channels, variant=backbone)
            self.aspp = ASPP(2048, [3, 6, 9])
            self.decoder = Decoder([256, 128, 64, 48, out_channels], [512, 256, 64, in_channels])
        else:
            self.backbone = MobileNetV2Encoder(in_channels)
            self.aspp = ASPP(320, [3, 6, 9])
            self.decoder = Decoder([256, 128, 64, 48, out_channels], [32, 24, 16, in_channels])

    def forward(self, x):
        x, *shortcuts = self.backbone(x)
        x = self.aspp(x)
        x = self.decoder(x, *shortcuts)
        return x

    def load_pretrained_deeplabv3_state_dict(self, state_dict, print_stats=True):
        # Pretrained DeepLabV3 models are provided by <https://github.com/VainF/DeepLabV3Plus-Pytorch>.
        # This method converts and loads their pretrained state_dict to match with our model structure.
        # This method is not needed if you are not planning to train from deeplab weights.
        # Use load_state_dict() for normal weight loading.

        # Convert state_dict naming for aspp module
        state_dict = {k.replace('classifier.classifier.0', 'aspp'): v for k, v in state_dict.items()}

        if isinstance(self.backbone, ResNetEncoder):
            # ResNet backbone does not need change.
            load_matched_state_dict(self, state_dict, print_stats)
        else:
            # Change MobileNetV2 backbone to state_dict format, then change back after loading.
            backbone_features = self.backbone.features
            self.backbone.low_level_features = backbone_features[:4]
            self.backbone.high_level_features = backbone_features[4:]
            del self.backbone.features
            load_matched_state_dict(self, state_dict, print_stats)
            self.backbone.features = backbone_features
            del self.backbone.low_level_features
            del self.backbone.high_level_features

class MattingBase(Base):

    def __init__(self, backbone: str):
        super().__init__(backbone, in_channels=6, out_channels=(1 + 3 + 1 + 32))

    def forward(self, src, bgr):
        x = torch.cat([src, bgr], dim=1)
        x, *shortcuts = self.backbone(x)
        x = self.aspp(x)
        x = self.decoder(x, *shortcuts)
        pha = x[:, 0:1].clamp_(0., 1.)
        fgr = x[:, 1:4].add(src).clamp_(0., 1.)
        err = x[:, 4:5].clamp_(0., 1.)
        hid = x[:, 5:].relu_()
        return pha, fgr, err, hid

class MattingRefine(MattingBase):

    def __init__(self,
                 backbone: str,
                 backbone_scale: float = 1 / 4,
                 refine_mode: str = 'sampling',
                 refine_sample_pixels: int = 80_000,
                 refine_threshold: float = 0.1,
                 refine_kernel_size: int = 3,
                 refine_prevent_oversampling: bool = True,
                 refine_patch_crop_method: str = 'unfold',
                 refine_patch_replace_method: str = 'scatter_nd'):
        assert backbone_scale <= 1 / 2, 'backbone_scale should not be greater than 1/2'
        super().__init__(backbone)
        self.backbone_scale = backbone_scale
        self.refiner = Refiner(refine_mode,
                               refine_sample_pixels,
                               refine_threshold,
                               refine_kernel_size,
                               refine_prevent_oversampling,
                               refine_patch_crop_method,
                               refine_patch_replace_method)

    def forward(self, src, bgr):
        assert src.size() == bgr.size(), 'src and bgr must have the same shape'
        assert src.size(2) // 4 * 4 == src.size(2) and src.size(3) // 4 * 4 == src.size(3), \
            'src and bgr must have width and height that are divisible by 4'

        # Downsample src and bgr for backbone
        src_sm = F.interpolate(src,
                               scale_factor=self.backbone_scale,
                               mode='bilinear',
                               align_corners=False,
                               recompute_scale_factor=True)
        bgr_sm = F.interpolate(bgr,
                               scale_factor=self.backbone_scale,
                               mode='bilinear',
                               align_corners=False,
                               recompute_scale_factor=True)

        # Base
        x = torch.cat([src_sm, bgr_sm], dim=1)
        x, *shortcuts = self.backbone(x)
        x = self.aspp(x)
        x = self.decoder(x, *shortcuts)
        pha_sm = x[:, 0:1].clamp_(0., 1.)
        fgr_sm = x[:, 1:4]
        err_sm = x[:, 4:5].clamp_(0., 1.)
        hid_sm = x[:, 5:].relu_()

        # Refiner
        pha, fgr, ref_sm = self.refiner(src, bgr, pha_sm, fgr_sm, err_sm, hid_sm)

        # Clamp outputs
        pha = pha.clamp_(0., 1.)
        fgr = fgr.add_(src).clamp_(0., 1.)
        fgr_sm = src_sm.add_(fgr_sm).clamp_(0., 1.)

        return pha, fgr, pha_sm, fgr_sm, err_sm, ref_sm

class ImagesDataset(Dataset):
    def __init__(self, root, mode='RGB', transforms=None):
        self.transforms = transforms
        self.mode = mode
        self.filenames = sorted([*glob.glob(os.path.join(root, '**', '*.jpg'), recursive=True),
                                 *glob.glob(os.path.join(root, '**', '*.png'), recursive=True)])

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, idx):
        with Image.open(self.filenames[idx]) as img:
            img = img.convert(self.mode)
        if self.transforms:
            img = self.transforms(img)

        return img

class NewImagesDataset(Dataset):
    def __init__(self, root, mode='RGB', transforms=None):
        self.transforms = transforms
        self.mode = mode
        self.filenames = [root]
        print(self.filenames)

    def __len__(self):
        return len(self.filenames)

    def __getitem__(self, idx):
        with Image.open(self.filenames[idx]) as img:
            img = img.convert(self.mode)

        if self.transforms:
            img = self.transforms(img)

        return img

class ZipDataset(Dataset):
    def __init__(self, datasets: List[Dataset], transforms=None, assert_equal_length=False):
        self.datasets = datasets
        self.transforms = transforms

        if assert_equal_length:
            for i in range(1, len(datasets)):
                assert len(datasets[i]) == len(datasets[i - 1]), 'Datasets are not equal in length.'

    def __len__(self):
        return max(len(d) for d in self.datasets)

    def __getitem__(self, idx):
        x = tuple(d[idx % len(d)] for d in self.datasets)
        print(x)
        if self.transforms:
            x = self.transforms(*x)
        return x

class PairCompose(T.Compose):
    def __call__(self, *x):
        for transform in self.transforms:
            x = transform(*x)
        return x

class PairApply:
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, *x):
        return [self.transforms(xi) for xi in x]

# --------------- Arguments ---------------

parser = argparse.ArgumentParser(description='hy-replace-background')

parser.add_argument('--model-type', type=str, required=False, choices=['mattingbase', 'mattingrefine'],
                    default='mattingrefine')
parser.add_argument('--model-backbone', type=str, required=False, choices=['resnet101', 'resnet50', 'mobilenetv2'],
                    default='resnet50')
parser.add_argument('--model-backbone-scale', type=float, default=0.25)
parser.add_argument('--model-checkpoint', type=str, required=False, default='model/pytorch_resnet50.pth')
parser.add_argument('--model-refine-mode', type=str, default='sampling', choices=['full', 'sampling', 'thresholding'])
parser.add_argument('--model-refine-sample-pixels', type=int, default=80_000)
parser.add_argument('--model-refine-threshold', type=float, default=0.7)
parser.add_argument('--model-refine-kernel-size', type=int, default=3)

parser.add_argument('--device', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.add_argument('--num-workers', type=int, default=0,
                    help='number of worker threads used in DataLoader. Note that Windows need to use single thread (0).')
parser.add_argument('--preprocess-alignment', action='store_true')

parser.add_argument('--output-dir', type=str, required=False, default='content/output')
parser.add_argument('--output-types', type=str, required=False, nargs='+',
                    choices=['com', 'pha', 'fgr', 'err', 'ref', 'new'],
                    default=['new'])
parser.add_argument('-y', action='store_true')

def handle(image_path: str, bgr_path: str, new_bg: str):
    parser.add_argument('--images-src', type=str, required=False, default=image_path)
    parser.add_argument('--images-bgr', type=str, required=False, default=bgr_path)
    args = parser.parse_args()

    assert 'err' not in args.output_types or args.model_type in ['mattingbase', 'mattingrefine'], \
        'Only mattingbase and mattingrefine support err output'
    assert 'ref' not in args.output_types or args.model_type in ['mattingrefine'], \
        'Only mattingrefine support ref output'

    # --------------- Main ---------------

    device = torch.device(args.device)

    # Load model
    if args.model_type == 'mattingbase':
        model = MattingBase(args.model_backbone)
    if args.model_type == 'mattingrefine':
        model = MattingRefine(
            args.model_backbone,
            args.model_backbone_scale,
            args.model_refine_mode,
            args.model_refine_sample_pixels,
            args.model_refine_threshold,
            args.model_refine_kernel_size)

    model = model.to(device).eval()
    model.load_state_dict(torch.load(args.model_checkpoint, map_location=device), strict=False)

    # Load images
    dataset = ZipDataset([
        NewImagesDataset(args.images_src),
        NewImagesDataset(args.images_bgr),
    ], assert_equal_length=True, transforms=PairCompose([
        HomographicAlignment() if args.preprocess_alignment else PairApply(nn.Identity()),
        PairApply(T.ToTensor())
    ]))
    dataloader = DataLoader(dataset, batch_size=1, num_workers=args.num_workers, pin_memory=True)

    # # Create output directory
    # if os.path.exists(args.output_dir):
    #     if args.y or input(f'Directory {args.output_dir} already exists. Override? [Y/N]: ').lower() == 'y':
    #         shutil.rmtree(args.output_dir)
    #     else:
    #         exit()

    for output_type in args.output_types:
        if os.path.exists(os.path.join(args.output_dir, output_type)) is False:
            os.makedirs(os.path.join(args.output_dir, output_type))

    # Worker function
    def writer(img, path):
        img = to_pil_image(img[0].cpu())
        img.save(path)

    # Worker function
    def writer_hy(img, new_bg, path):
        img = to_pil_image(img[0].cpu())
        img_size = img.size
        new_bg_img = Image.open(new_bg).convert('RGBA')
        new_bg_img.resize(img_size, Image.ANTIALIAS)
        out = Image.alpha_composite(new_bg_img, img)
        out.save(path)

    result_file_name = str(uuid.uuid4())

    # Conversion loop
    with torch.no_grad():
        for i, (src, bgr) in enumerate(tqdm(dataloader)):
            src = src.to(device, non_blocking=True)
            bgr = bgr.to(device, non_blocking=True)

            if args.model_type == 'mattingbase':
                pha, fgr, err, _ = model(src, bgr)
            elif args.model_type == 'mattingrefine':
                pha, fgr, _, _, err, ref = model(src, bgr)

            pathname = dataset.datasets[0].filenames[i]
            pathname = os.path.relpath(pathname, args.images_src)
            pathname = os.path.splitext(pathname)[0]

            if 'new' in args.output_types:
                new = torch.cat([fgr * pha.ne(0), pha], dim=1)
                Thread(target=writer_hy,
                       args=(new, new_bg, os.path.join(args.output_dir, 'new', result_file_name + '.png'))).start()
            if 'com' in args.output_types:
                com = torch.cat([fgr * pha.ne(0), pha], dim=1)
                Thread(target=writer, args=(com, os.path.join(args.output_dir, 'com', pathname + '.png'))).start()
            if 'pha' in args.output_types:
                Thread(target=writer, args=(pha, os.path.join(args.output_dir, 'pha', pathname + '.jpg'))).start()
            if 'fgr' in args.output_types:
                Thread(target=writer, args=(fgr, os.path.join(args.output_dir, 'fgr', pathname + '.jpg'))).start()
            if 'err' in args.output_types:
                err = F.interpolate(err, src.shape[2:], mode='bilinear', align_corners=False)
                Thread(target=writer, args=(err, os.path.join(args.output_dir, 'err', pathname + '.jpg'))).start()
            if 'ref' in args.output_types:
                ref = F.interpolate(ref, src.shape[2:], mode='nearest')
                Thread(target=writer, args=(ref, os.path.join(args.output_dir, 'ref', pathname + '.jpg'))).start()

    return os.path.join(args.output_dir, 'new', result_file_name + '.png')

if __name__ == '__main__':
    handle("data/img2.png", "data/bg.png", "data/newbg.jpg")

代码说明

1、handle方法的参数一次为:原始图路径、原始背景图路径、新背景图路径。

1、我将原项目中inferance_images使用的类都移到一个文件中,精简一下项目结构。

2、ImagesDateSet我重新构造了一个新的NewImagesDateSet,,主要是因为我只打算处理一张图片。

3、最终图片都存在相同目录下,避免重复使用uuid作为文件名。

4、本文给出的代码没有对文件格式做严格校正,不是很关键,如果需要补充就行。

验证一下效果

总结

研究这个开源项目以及编写替换背景的功能,需要对项目本身的很多设置需要了解。以后有机会,我会把yolov5开源项目也魔改一下,基于作者给出的效果实现作出自己想要的东西,会非常有意思。本文的项目功能只是临时做的,不是很健壮,想用的话自己再发挥发挥自己的想象力吧。

以上就是Python 照片人物背景替换的实现方法的详细内容,更多关于Python照片处理的资料请关注我们其它相关文章!

(0)

相关推荐

  • 教你怎么用Python生成九宫格照片

    一.朋友圈九宫格效果图 二.图片基本操作 打开要处理的图片 判断打开的图片是否为正方形 如果是正方形,就进行九等分,如果不是正方形,先用白色填充为正方形,再进行九等分 保存处理完的图片 第一步,先我安装一下Pillow模块 pip install pillow 1 .处理图片 在Pillow中,用Image子模块.Image.open函数会返回一个图片对象,代码如下: from PIL import Image # 读取图片 img = Image.open('lbxx.jpg') Pillow

  • Python实现将蓝底照片转化为白底照片功能完整实例

    本文实例讲述了Python实现将蓝底照片转化为白底照片功能.分享给大家供大家参考,具体如下: import cv2 import numpy as np img=cv2.imread('yay.jpg') #原始图片 #缩放 rows,cols,channels = img.shape img=cv2.resize(img,None,fx=0.5,fy=0.5) rows,cols,channels = img.shape cv2.imshow('img',img) #转换hsv hsv=cv2

  • Python实现对照片中的人脸进行颜值预测

    一.所需工具 **Python版本:**3.5.4(64bit) 二.相关模块 opencv_python模块 sklearn模块 numpy模块 dlib模块 一些Python自带的模块. 三.环境搭建 (1)安装相应版本的Python并添加到环境变量中: (2)pip安装相关模块中提到的模块. 例如: 若pip安装报错,请自行到: http://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载pip安装报错模块的whl文件,并使用: pip install whl

  • Python实现老照片修复之上色小技巧

    导语 "黑白变彩色,就是这么简单" 老照片上色,是一门功夫,费时费力. 老照片上色,也是一门艺术,还原历史. 提起老照片上色,小编第一个想到了的就是一位名叫Marina Amaral的艺术家,她将历史上很多著名的老照片,都用后期处理的方式填补上了颜色. 逼真.写实,看不出丝毫的漏洞,你对她的作品有多钦佩,也就意味着这项技艺有多复杂. 所以,你想学习老照片上色吗?也想把父母的照片,或者儿时的黑白照变成彩色的吗? 那木木子给你的建议的是:别费劲了,因为,这项工作,以后交给AI去完成就可以了

  • Python 照片人物背景替换的实现方法

    目录 前言 项目说明 项目结构 数据准备 替换背景图代码 代码说明 验证一下效果 总结 前言 本文的github仓库地址为: 替换照片人物背景项目(模型文件过大,不在仓库中) 由于模型文件过大,没放在仓库中,本文下面有模型下载地址. 项目说明 项目结构 我们先看一下项目的结构,如图: 其中,model文件夹放的是模型文件,模型文件的下载地址为:模型下载地址 下载该模型放到model文件夹下. 依赖文件-requirements.txt,说明一下,pytorch的安装需要使用官网给出的,避免显卡驱

  • python人物视频背景替换实现虚拟空间穿梭

    目录 引言 准备工作 纯RGB背景替换 自定义图像背景板替换 引言 近期网上这位卖蜂蜜的小伙鬼畜挺火的,大家质疑背景造假,这里我就带着大家实现“背景造假”(PS:原视频小伙是在真实场景拍摄的) 准备工作 在实现该功能之前,我们需要准备好python==3.7 然后执行: pip install mediapipe 方案一: PC端可以选择外界摄像头或者连接网络摄像头,最好挑选一个纯属的背景板作为视频画面背景(这样有利于任务分割): 方案二: 网上下载有人物活动的视频,然后用下载的视频替代连接摄像

  • Python实现查找匹配项作处理后再替换回去的方法

    本文实例讲述了Python实现查找匹配项作处理后再替换回去的方法.分享给大家供大家参考,具体如下: 这里实现Python在对找到的匹配项进行适当处理后,再替换掉原来那个匹配的项. #!/usr/bin/python # coding=GBK import re # 对m作适当处理后返回结果 def fun(m): print("in: %s" %m.group(0)) ret = m.group(0).upper()[::-1] return ret src = "what

  • Python实现自动为照片添加日期并分类的方法

    本文实例讲述了Python实现自动为照片添加日期并分类的方法.分享给大家供大家参考,具体如下: 小时候没怎么照相,所以跟别人说小时候特别帅他们都不信.小外甥女出生了,我给买了个照相机,让她多照相.可惜他舅目前还是个屌丝,买了个700的屌丝照相机,竟然没有自动加日期的功能.试了几个小软件,都不好用,大的图像软件咱又不会用.身为一个计算机科学与技术专业的学生,只能自立更生了. 听说Python有个图形库,不错,在照片上打日期很容易,于是我就下了这个库.对Python不熟,一面看着手册一面写的.完成了

  • python 用lambda函数替换for循环的方法

    场景如下: 现在有一个dataframe,其中一列为score,值从0-100, df: score 98 88 37 68 86 33 现在需要增加一列level,给这些分数分类,90分以上为A,60-90为B,60以下为C. 常用的方法肯定是使用for循环,对每一行进行处理. import pandas as pd list = [98,88,37,68,86,33] df = pd.DataFrame(list, columns=['score']) # convert list to d

  • Python + opencv对拍照得到的图片进行背景去除的实现方法

    有时候我们没办法得到pdf或者word文档,这个时候会使用手机或者相机进行拍照,往往会出现背景,打印出来就是灰色的或者有黑色的背景,这个时候影响视野观看,通过代码实现对背景去除,还原清晰图像.代码如下: #!/usr/bin/python3.6 # -*- coding: utf-8 -*- # @Time : 2020/11/17 19:06 # @Author : ptg # @Email : zhxwhchina@163.com # @File : 去背景.py # @Software:

  • Python PaddleGAN实现调整照片人物年龄

    目录 前言 环境部署 项目使用 预处理部分 照片老化处理 照片年轻化处理 总结 前言 最近在试着研究飞浆平台的许多功能,看到了许多有意思的功能.其中可以将照片美化以及年龄调整这个功能让我想到了之前抖音的一个功能,所以特别感兴趣.花了些时间把项目拉下来玩了玩,用了一些我自己找的数据. PaddleGAN的Github地址:github仓库 环境部署 如果没有看过相关的文章,可能会被README搞得很迷糊.先不用看README中一个个教程或者md,我们要先安装执行环境.主要看docs/zh_CN/i

  • Python PaddleGAN实现照片人物性别反转

    前言 接着我的上篇文章:Python PaddleGAN实现调整照片人物年龄 在上面的文章中,我们发现styleganv2editing.py是支持性别编辑的.所以调整了一下参数,来试着实现一下照片的性别翻转.下面我们开始吧 环境搭建 这部分就直接参考上面的文章吧,就不再写一遍了.先发一下我准备的照片,如下: 实现过程 下面我们一步步操作一下,首先我们要做个预处理,和上一篇文章中一样. 预处理 执行命令 python -u applications/tools/pixel2style2pixel

  • OpenCV实战之AI照片背景替换

    目录 导语 正文 1)附主程序 2)展示其他 总结 导语 不少人在生活中都有抠人像图换背景的需求.那怎么抠图呢? 相信不少人第一时间就想到了 PS 抠图大法,为了学会 PS 抠图很多人还花费不少精力,而且学会后大家想必都有共同感触:PS 抠图在制作抠图选区这个步骤太耗费时间!!就跟我减肥似的! 今天木木子就手把手教大家编写一款抠图人像技术—— 这款小程序实现一键智能抠取人像图的功能,非常强大! 比 PS 慢慢抠图效率可提升了太多了,而且还能让不会 PS 的群体也能轻松学会抠人像图. 吹了这么多,

  • Python基于纹理背景和聚类算法实现图像分割详解

    目录 一.基于纹理背景的图像分割 二.基于K-Means聚类算法的区域分割 三.总结 一.基于纹理背景的图像分割 该部分主要讲解基于图像纹理信息(颜色).边界信息(反差)和背景信息的图像分割算法.在OpenCV中,GrabCut算法能够有效地利用纹理信息和边界信息分割背景,提取图像目标物体.该算法是微软研究院基于图像分割和抠图的课题,它能有效地将目标图像分割提取,如图1所示[1]. GrabCut算法原型如下所示: mask, bgdModel, fgdModel = grabCut(img,

随机推荐