解决Keras中循环使用K.ctc_decode内存不释放的问题

如下一段代码,在多次调用了K.ctc_decode时,会发现程序占用的内存会越来越高,执行速度越来越慢。

data = generator(...)
model = init_model(...)
for i in range(NUM):
  x, y = next(data)
  _y = model.predict(x)
  shape = _y.shape
  input_length = np.ones(shape[0]) * shape[1]
  ctc_decode = K.ctc_decode(_y, input_length)[0][0]
  out = K.get_value(ctc_decode)

原因

每次执行ctc_decode时都会向计算图中添加一个节点,这样会导致计算图逐渐变大,从而影响计算速度和内存。

PS:有资料说是由于get_value导致的,其中也给出了解决方案。

但是我将ctc_decode放在循环体之外就不再出现内存和速度问题,这是否说明get_value影响其实不大呢?

解决方案

通过K.function封装K.ctc_decode,只需初始化一次,只向计算图中添加一个计算节点,然后多次调用该节点(函数)

data = generator(...)
model = init_model(...)
x = model.output  # [batch_sizes, series_length, classes]
input_length = KL.Input(batch_shape=[None], dtype='int32')
ctc_decode = K.ctc_decode(x, input_length=input_length * K.shape(x)[1])
decode = K.function([model.input, input_length], [ctc_decode[0][0]])
for i in range(NUM):
  _x, _y = next(data)
  out = decode([_x, np.ones(1)])

补充知识:CTC_loss和CTC_decode的模型封装代码避免节点不断增加

该问题可以参考上面的描述,无论是CTC_decode还是CTC_loss,每次运行都会创建节点,避免的方法是将其封装到model中,这样就固定了计算节点。

测试方法: 在初始化节点后(注意是在运行fit/predict至少一次后,因为这些方法也会更改计算图状态),运行K.get_session().graph.finalize()锁定节点,此时如果图节点变了会报错并提示出错代码。

from keras import backend as K
from keras.layers import Lambda,Input
from keras import Model
from tensorflow.python.ops import ctc_ops as ctc
import tensorflow as tf
from keras.layers import Layer
class CTC_Batch_Cost():
  '''
  用于计算CTC loss
  '''
  def ctc_lambda_func(self,args):
    """Runs CTC loss algorithm on each batch element.

    # Arguments
      y_true: tensor `(samples, max_string_length)` 真实标签
      y_pred: tensor `(samples, time_steps, num_categories)` 预测前未经过softmax的向量
      input_length: tensor `(samples, 1)` 每一个y_pred的长度
      label_length: tensor `(samples, 1)` 每一个y_true的长度

      # Returns
        Tensor with shape (samples,1) 包含了每一个样本的ctc loss
      """
    y_true, y_pred, input_length, label_length = args

    # y_pred = y_pred[:, :, :]
    # y_pred = y_pred[:, 2:, :]
    return self.ctc_batch_cost(y_true, y_pred, input_length, label_length)

  def __call__(self, args):
    '''
    ctc_decode 每次创建会生成一个节点,这里参考了上面的内容
    将ctc封装成模型,是否会解决这个问题还没有测试过这种方法是否还会出现创建节点的问题
    '''
    y_true = Input(shape=(None,))
    y_pred = Input(shape=(None,None))
    input_length = Input(shape=(1,))
    label_length = Input(shape=(1,))

    lamd = Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')([y_true,y_pred,input_length,label_length])
    model = Model([y_true,y_pred,input_length,label_length],[lamd],name="ctc")

    # return Lambda(self.ctc_lambda_func, output_shape=(1,), name='ctc')(args)
    return model(args)

  def ctc_batch_cost(self,y_true, y_pred, input_length, label_length):
    """Runs CTC loss algorithm on each batch element.

    # Arguments
      y_true: tensor `(samples, max_string_length)`
        containing the truth labels.
      y_pred: tensor `(samples, time_steps, num_categories)`
        containing the prediction, or output of the softmax.
      input_length: tensor `(samples, 1)` containing the sequence length for
        each batch item in `y_pred`.
      label_length: tensor `(samples, 1)` containing the sequence length for
        each batch item in `y_true`.

    # Returns
      Tensor with shape (samples,1) containing the
        CTC loss of each element.
    """
    label_length = tf.to_int32(tf.squeeze(label_length, axis=-1))
    input_length = tf.to_int32(tf.squeeze(input_length, axis=-1))
    sparse_labels = tf.to_int32(K.ctc_label_dense_to_sparse(y_true, label_length))

    y_pred = tf.log(tf.transpose(y_pred, perm=[1, 0, 2]) + 1e-7)

    # 注意这里的True是为了忽略解码失败的情况,此时loss会变成nan直到下一个个batch
    return tf.expand_dims(ctc.ctc_loss(inputs=y_pred,
                      labels=sparse_labels,
                      sequence_length=input_length,
                      ignore_longer_outputs_than_inputs=True), 1)

# 使用方法:(注意shape)
loss_out = CTC_Batch_Cost()([y_true, y_pred, audio_length, label_length])
from keras import backend as K
from keras.layers import Lambda,Input
from keras import Model
from tensorflow.python.ops import ctc_ops as ctc
import tensorflow as tf
from keras.layers import Layer

class CTCDecodeLayer(Layer):

  def __init__(self, **kwargs):
    super().__init__(**kwargs)

  def _ctc_decode(self,args):
    base_pred, in_len = args
    in_len = K.squeeze(in_len,axis=-1)

    r = K.ctc_decode(base_pred, in_len, greedy=True, beam_width=100, top_paths=1)
    r1 = r[0][0]
    prob = r[1][0]
    return [r1,prob]

  def call(self, inputs, **kwargs):
    return self._ctc_decode(inputs)

  def compute_output_shape(self, input_shape):
    return [(None,None),(1,)]

class CTCDecode():
  '''用与CTC 解码,得到真实语音序列
      2019年7月18日所写,对ctc_decode使用模型进行了封装,从而在初始化完成后不会再有新节点的产生
  '''
  def __init__(self):
    base_pred = Input(shape=[None,None],name="pred")
    feature_len = Input(shape=[1,],name="feature_len")
    r1, prob = CTCDecodeLayer()([base_pred,feature_len])
    self.model = Model([base_pred,feature_len],[r1,prob])
    pass

  def ctc_decode(self,base_pred,in_len,return_prob = False):
    '''
    :param base_pred:[sample,timestamp,vector]
    :param in_len: [sample,1]
    :return:
    '''
    result,prob = self.model.predict([base_pred,in_len])
    if return_prob:
      return result,prob
    return result

  def __call__(self,base_pred,in_len,return_prob = False):
    return self.ctc_decode(base_pred,in_len,return_prob)

# 使用方法:(注意shape,是batch级的输入)
ctc_decoder = CTCDecode()
ctc_decoder.ctc_decode(result,feature_len)

以上这篇解决Keras中循环使用K.ctc_decode内存不释放的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 使用Keras预训练好的模型进行目标类别预测详解

    前言 最近开始学习深度学习相关的内容,各种书籍.教程下来到目前也有了一些基本的理解.参考Keras的官方文档自己做一个使用application的小例子,能够对图片进行识别,并给出可能性最大的分类. 闲言少叙,开始写代码 环境搭建相关就此省去,网上非常多.我觉得没啥难度 from keras.applications.resnet50 import ResNet50 from keras.preprocessing import image from keras.applications.res

  • 浅谈keras中Dropout在预测过程中是否仍要起作用

    因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过.其中Dropout这个坑,我记忆犹新. 一开始,我以为预测时要保持和训练时完全一样的网络结构,也就是预测时用的网络也是有丢弃的网络节点,但是这样想就掉进了一个大坑!因为无法通过已经训练好的模型,来获取其训练时随机丢弃的网络节点是那些,这本身就根本不可能. 更重要的是:我发现每一个迭代周期丢弃的神经元也不完全一样. 假若迭代500次,网络共有1000个神经元, 在第n(1<= n <500)个迭代周期内,从1

  • 浅谈keras 模型用于预测时的注意事项

    为什么训练误差比测试误差高很多? 一个Keras的模型有两个模式:训练模式和测试模式.一些正则机制,如Dropout,L1/L2正则项在测试模式下将不被启用. 另外,训练误差是训练数据每个batch的误差的平均.在训练过程中,每个epoch起始时的batch的误差要大一些,而后面的batch的误差要小一些.另一方面,每个epoch结束时计算的测试误差是由模型在epoch结束时的状态决定的,这时候的网络将产生较小的误差. [Tips]可以通过定义回调函数将每个epoch的训练误差和测试误差并作图,

  • Keras 加载已经训练好的模型进行预测操作

    使用Keras训练好的模型用来直接进行预测,这个时候我们该怎么做呢?[我这里使用的就是一个图片分类网络] 现在让我来说说怎么样使用已经训练好的模型来进行预测判定把 首先,我们已经又有了model模型,这个模型被保存为model.h5文件 然后我们需要在代码里面进行加载 model = load_model("model.h5") 假设我们自己已经写好了一个load_data函数[load_data最好是返回已经通过了把图片转成numpy的data,以及图片对应的label] 然后我们先

  • 解决Keras中循环使用K.ctc_decode内存不释放的问题

    如下一段代码,在多次调用了K.ctc_decode时,会发现程序占用的内存会越来越高,执行速度越来越慢. data = generator(...) model = init_model(...) for i in range(NUM): x, y = next(data) _y = model.predict(x) shape = _y.shape input_length = np.ones(shape[0]) * shape[1] ctc_decode = K.ctc_decode(_y,

  • 解决Keras 中加入lambda层无法正常载入模型问题

    刚刚解决了这个问题,现在记录下来 问题描述 当使用lambda层加入自定义的函数后,训练没有bug,载入保存模型则显示Nonetype has no attribute 'get' 问题解决方法: 这个问题是由于缺少config信息导致的.lambda层在载入的时候需要一个函数,当使用自定义函数时,模型无法找到这个函数,也就构建不了. m = load_model(path,custom_objects={"reduce_mean":self.reduce_mean,"sli

  • 解决Keras中Embedding层masking与Concatenate层不可调和的问题

    问题描述 我在用Keras的Embedding层做nlp相关的实现时,发现了一个神奇的问题,先上代码: a = Input(shape=[15]) # None*15 b = Input(shape=[30]) # None*30 emb_a = Embedding(10, 5, mask_zero=True)(a) # None*15*5 emb_b = Embedding(20, 5, mask_zero=False)(b) # None*30*5 cat = Concatenate(axi

  • 解决Keras中CNN输入维度报错问题

    想要写分类器对图片进行分类,用到了CNN.然而,在运行程序时,一直报错: ValueError: Negative dimension size caused by subtracting 5 from 1 for 'conv2d_1/convolution' (op: 'Conv2D') with input shapes: [?,1,28,28], [5,5,28,30]. 这部分提到的代码是这样的,这是我的分类器的输入层: model.add(Conv2D(30,(5, 5), input

  • 解决Django中调用keras的模型出现的问题

    笔者小白在用Django写一个表格单据图片的识别应用的时候,遇到了调用基于Tensorflow的keras模型出错的问题. 出现的错误信息类似于以下: ValueError: Tensor Tensor("Placeholder:0", shape=(3, 3, 1, 32), dtype=float32) 通过查询相关的资料,对解决的方式做一个记录. 方法1.通过导入 import Keras 然后在构建模型前面加一句 keras.backend.clear_session() 方法

  • Spring中循环依赖的解决方法详析

    前言 说起Spring中循环依赖的解决办法,相信很多园友们都或多或少的知道一些,但当真的要详细说明的时候,可能又没法一下将它讲清楚.本文就试着尽自己所能,对此做出一个较详细的解读.另,需注意一点,下文中会出现类的实例化跟类的初始化两个短语,为怕园友迷惑,事先声明一下,本文的实例化是指刚执行完构造器将一个对象new出来,但还未填充属性值的状态,而初始化是指完成了属性的依赖注入. 一.先说说Spring解决的循环依赖是什么 Java中的循环依赖分两种,一种是构造器的循环依赖,另一种是属性的循环依赖.

  • 解决python中显示图片的plt.imshow plt.show()内存泄漏问题

    当要处理批量图片,且每张图片都要进行显示时,用plt.imshow() plt.show()会出现内存泄漏, 管理器中看到其中一个python进程的内存不断上涨,目前有找到解决方法 from matplotlib import pyplot as plt ... for...: ... plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np) plt.show() 补充知识:python在内存中读取base64图片 import base64 imp

  • 解决在keras中使用model.save()函数保存模型失败的问题

    我使用的是anaconda安装的环境,其中有一个是h5py,自动安装的是2.7.0的版本,这个版本会导致保存模型时python奔溃. conda install h5py==2.8.0 将h5py更新一个版本即可解决这个问题. 补充知识:Django安装提示错误 使用sudo pip install ......的时候出现下面一段代码: The directory '/Users/XX/Library/Caches/pip' or its parent directory is not owne

  • 升级keras解决load_weights()中的未定义skip_mismatch关键字问题

    1.问题描述 在用yolov3训练自己的数据集时,尝试加载预训练的权重,在冻结前154层的基础上,利用自己的数据集finetune. 出现如下错误: load_weights(),got an unexpected keyword argument skip_mismatch 2.解决方法 因为keras旧版本没有这一定义,在新的版本中有这一关键字的定义,因此,更新keras版本至2.1.5即可解决. source activate env pip uninstall keras pip ins

  • 解决Keras TensorFlow 混编中 trainable=False设置无效问题

    这是最近碰到一个问题,先描述下问题: 首先我有一个训练好的模型(例如vgg16),我要对这个模型进行一些改变,例如添加一层全连接层,用于种种原因,我只能用TensorFlow来进行模型优化,tf的优化器,默认情况下对所有tf.trainable_variables()进行权值更新,问题就出在这,明明将vgg16的模型设置为trainable=False,但是tf的优化器仍然对vgg16做权值更新 以上就是问题描述,经过谷歌百度等等,终于找到了解决办法,下面我们一点一点的来复原整个问题. trai

随机推荐