对Tensorflow中的变量初始化函数详解
Tensorflow 提供了7种不同的初始化函数:
tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值。
假设在卷积层中,设置偏执项b为0,则写法为: 1. bias_initializer=tf.constant_initializer(0) 2. bias_initializer=tf.zeros_initializer(0)
tf.random_normal_initializer(mean,stddev) #功能是将变量初始化为满足正太分布的随机值,主要参数(正太分布的均值和标准差),用所给的均值和标准差初始化均匀分布
tf.truncated_normal_initializer(mean,stddev,seed,dtype) #功能:将变量初始化为满足正太分布的随机值,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机
mean:用于指定均值;stddev用于指定标准差;seed:用于指定随机数种子;dtype:用于指定随机数的数据类型。 通常只需要设定一个标准差stddev这一个参数就可以。
tf.random_uniform_initializer(a,b,seed,dtype) #从a到b均匀初始化,将变量初始化为满足平均分布的随机值,主要参数(最大值,最小值)
tf.uniform_unit_scaling_initializer(factor,seed,dtypr) #将变量初始化为满足平均分布但不影响输出数量级的随机值
max_val=math.sqrt(3/input_size)*factor; input_size指输入数据的维数,假设输入为x,计算为x*w,则input_size=w.shape[0]. 其分布区间为[-max_val,max_val]
tf.zeros_initializer() #将变量设置为全0;也可以简写为tf.Zeros()
tf.ones_initializer() #将变量设置为全1;可简写为tf.Ones()
以上这篇对Tensorflow中的变量初始化函数详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
详解TensorFlow查看ckpt中变量的几种方法
查看TensorFlow中checkpoint内变量的几种方法 查看ckpt中变量的方法有三种: 在有model的情况下,使用tf.train.Saver进行restore 使用tf.train.NewCheckpointReader直接读取ckpt文件,这种方法不需要model. 使用tools里的freeze_graph来读取ckpt 注意: 如果模型保存为.ckpt的文件,则使用该文件就可以查看.ckpt文件里的变量.ckpt路径为 model.ckpt 如果模型保存为.ckpt-xxx-
-
详解tensorflow载入数据的三种方式
Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A
-
TensorFlow变量管理详解
一.TensorFlow变量管理 1. TensorFLow还提供了tf.get_variable函数来创建或者获取变量,tf.variable用于创建变量时,其功能和tf.Variable基本是等价的.tf.get_variable中的初始化方法(initializer)的参数和tf.Variable的初始化过程也类似,initializer函数和tf.Variable的初始化方法是一一对应的,详见下表. tf.get_variable和tf.Variable最大的区别就在于指定变量名称的参数
-
对Tensorflow中的变量初始化函数详解
Tensorflow 提供了7种不同的初始化函数: tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值. 假设在卷积层中,设置偏执项b为0,则写法为: 1. bias_initializer=tf.constant_initializer(0) 2. bias_initializer=tf.zeros_initializer(0) tf.random_normal_initializer(mean,stddev) #功能是将变量初始化为
-
Python中的变量和作用域详解
作用域介绍 python中的作用域分4种情况: L:local,局部作用域,即函数中定义的变量: E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域,但不是全局的: G:globa,全局变量,就是模块级别定义的变量: B:built-in,系统固定模块里面的变量,比如int, bytearray等. 搜索变量的优先级顺序依次是:作用域局部>外层作用域>当前模块中的全局>python内置作用域,也就是LEGB. x = int(2.9) # int bu
-
对python中的高效迭代器函数详解
python中内置的库中有个itertools,可以满足我们在编程中绝大多数需要迭代的场合,当然也可以自己造轮子,但是有现成的好用的轮子不妨也学习一下,看哪个用的顺手~ 首先还是要先import一下: #import itertools from itertools import * #最好使用时用上面那个,不过下面的是为了演示比较 常用的,所以就直接全部导入了 一.无限迭代器: 由于这些都是无限迭代器,因此使用的时候都要设置终止条件,不然会一直运行下去,也就不是我们想要的结果了. 1.coun
-
对tensorflow中的strides参数使用详解
在二维卷积函数tf.nn.conv2d(),最大池化函数tf.nn.max_pool(),平均池化函数 tf.nn.avg_pool()中,卷积核的移动步长都需要制定一个参数strides(步长),因为无论是卷积操作还是各种类型的池化操作,都是某种形式的滑动窗口(sliding window)处理,这就要求指定从当前窗口移动下一个窗口位置的移动步长. TensorFlow 文档关于 strides的说明如下: strides: A list of ints that has length >=
-
Oracle中的游标和函数详解
Oracle中的游标和函数详解 1.游标 游标是一种 PL/SQL 控制结构:可以对 SQL 语句的处理进行显示控制,便于对表的行数据 逐条进行处理. 游标并不是一个数据库对象,只是存留在内存中. 操作步骤: 声明游标 打开游标 取出结果,此时的结果取出的是一行数据 关闭游标 到底那种类型可以把一行的数据都装进来 此时使用 ROWTYPE 类型,此类型表示可以把一行的数据都装进来. 例如:查询雇员编号为 7369 的信息(肯定是一行信息). 例:查询雇员编号为 7369 的信息(肯定是一
-
jQuery3.0中的buildFragment私有函数详解
时隔 3 个月,jQuery 团队终于发布了 3.0 Alpha 版本.有两个版本 jQuery compat 3.0 和 jQuery 3.0. jQuery compat 3.0 对应之前的 1.x, 兼容更多的浏览器,对于IE支持到 8.0 版本 jQuery 3.0 对应之前的 2.x,关注更新的浏览器,对于IE支持到 9.0 版本 此外, 3.0还增加了对 Yandex 浏览器的支持,一款来自俄罗斯的浏览器. 下面看下jQuery3.0中的buildFragment. 在 jQuery
-
对pandas中Series的map函数详解
Series的map方法可以接受一个函数或含有映射关系的字典型对象. 使用map是一种实现元素级转换以及其他数据清理工作的便捷方式. (DataFrame中对应的是applymap()函数,当然DataFrame还有apply()函数) 1.字典映射 import pandas as pd from pandas import Series, DataFrame data = DataFrame({'food':['bacon','pulled pork','bacon','Pastrami',
-
对Python中plt的画图函数详解
1.plt.legend plt.legend(loc=0)#显示图例的位置,自适应方式 说明: 'best' : 0, (only implemented for axes legends)(自适应方式) 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8,
-
vue之组件内监控$store中定义变量的变化详解
// 1.采用计算属性来获取$store中的值 computed: { listenstage() { return this.$store.state.iShaveMsg; } }, // 2.通过watch来检查定义计算属性获取到的值的变化 watch:{ listenstage: function(ov,nv){ console.log('watch start--'); if(this.$store.state.iShaveMsg){ //业务处理 } } console.log('wa
-
Tensorflow中tf.ConfigProto()的用法详解
参考Tensorflow Machine Leanrning Cookbook tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算 具体代码如下: import tensorflow as tf session_config = tf.ConfigProto( log_device_placement=True, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0,
随机推荐
- AngularJS实现动态添加Option的方法
- 在Vista中隐藏不适合公开的内容的方法
- 完整的HTTP通信步骤(7步)
- IOS多线程编程的3种实现方法
- 使用Chrome调试JavaScript的断点设置和调试技巧
- PHP实现伪静态方法汇总
- 常用正则表达式匹配代码介绍
- Android自定义View之圆形进度条式按钮
- SQLServer2005触发器提示其他会话正在使用事务的上下文的解决方法
- 详解CentOS6.5 安装 MySQL5.1.71的方法
- Java中使用数组实现栈数据结构实例
- Java中BigDecimal类的简单用法
- C#正则表达式的递归匹配分析
- php获取从百度、谷歌等搜索引擎进入网站关键词的方法
- PHP4中实现动态代理
- 深入浅出webpack之externals的使用
- vue2.0 element-ui中el-select选择器无法显示选中的内容(解决方法)
- Ajax请求时无法重定向的问题解决代码详解
- Windows安装MySQL8.0.16 的步骤及出现错误问题解决方法
- Python中collections模块的基本使用教程