python 实现逻辑回归

逻辑回归

适用类型:解决二分类问题

逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的结果,通过Sigmoid函数映射到(0,1)之间

线性回归的决策函数:数据与θ的乘法,数据的矩阵格式(样本数×列数),θ的矩阵格式(列数×1)

将其通过Sigmoid函数,获得逻辑回归的决策函数

使用Sigmoid函数的原因:

可以对(-∞, +∞)的结果,映射到(0, 1)之间作为概率

可以将1/2作为决策边界

数学特性好,求导容易

逻辑回归的损失函数

线性回归的损失函数维平方损失函数,如果将其用于逻辑回归的损失函数,则其数学特性不好,有很多局部极小值,难以用梯度下降法求解最优

这里使用对数损失函数

解释:如果一个样本为正样本,那么我们希望将其预测为正样本的概率p越大越好,也就是决策函数的值越大越好,则logp越大越好,逻辑回归的决策函数值就是样本为正的概率;如果一个样本为负样本,那么我们希望将其预测为负样本的概率越大越好,也就是(1-p)越大越好,即log(1-p)越大越好

为什么使用对数函数:样本集中有很多样本,要求其概率连乘,概率为0-1之间的数,连乘越来越小,利用log变换将其变为连加,不会溢出,不会超出计算精度

损失函数:: y(1->m)表示Sigmoid值(样本数×1),hθx(1->m)表示决策函数值(样本数×1),所以中括号的值(1×1)

二分类逻辑回归直线编码实现

import numpy as np
from matplotlib import pyplot as plt
​
from scipy.optimize import minimize
from sklearn.preprocessing import PolynomialFeatures
​
​
class MyLogisticRegression:
  def __init__(self):
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    # 包含数据和标签的数据集
    self.data = np.loadtxt("./data2.txt", delimiter=",")
    self.data_mat = self.data[:, 0:2]
    self.label_mat = self.data[:, 2]
    self.thetas = np.zeros((self.data_mat.shape[1]))
​
    # 生成多项式特征,最高6次项
    self.poly = PolynomialFeatures(6)
    self.p_data_mat = self.poly.fit_transform(self.data_mat)
​
  def cost_func_reg(self, theta, reg):
    """
    损失函数具体实现
    :param theta: 逻辑回归系数
    :param data_mat: 带有截距项的数据集
    :param label_mat: 标签数据集
    :param reg:
    :return:
    """
    m = self.label_mat.size
    label_mat = self.label_mat.reshape(-1, 1)
    h = self.sigmoid(self.p_data_mat.dot(theta))
​
    J = -1 * (1/m)*(np.log(h).T.dot(label_mat) + np.log(1-h).T.dot(1-label_mat))\
      + (reg / (2*m)) * np.sum(np.square(theta[1:]))
    if np.isnan(J[0]):
      return np.inf
    return J[0]
​
  def gradient_reg(self, theta, reg):
    m = self.label_mat.size
    h = self.sigmoid(self.p_data_mat.dot(theta.reshape(-1, 1)))
    label_mat = self.label_mat.reshape(-1, 1)
​
    grad = (1 / m)*self.p_data_mat.T.dot(h-label_mat) + (reg/m)*np.r_[[[0]], theta[1:].reshape(-1, 1)]
    return grad
​
  def gradient_descent_reg(self, alpha=0.01, reg=0, iterations=200):
    """
    逻辑回归梯度下降收敛函数
    :param alpha: 学习率
    :param reg:
    :param iterations: 最大迭代次数
    :return: 逻辑回归系数组
    """
    m, n = self.p_data_mat.shape
    theta = np.zeros((n, 1))
    theta_set = []
​
    for i in range(iterations):
      grad = self.gradient_reg(theta, reg)
      theta = theta - alpha*grad.reshape(-1, 1)
      theta_set.append(theta)
    return theta, theta_set
​
  def plot_data_reg(self, x_label=None, y_label=None, neg_text="negative", pos_text="positive", thetas=None):
    neg = self.label_mat == 0
    pos = self.label_mat == 1
    fig1 = plt.figure(figsize=(12, 8))
    ax1 = fig1.add_subplot(111)
    ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text)
    ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text)
    ax1.set_xlabel(x_label, fontsize=14)
​
    # 描绘逻辑回归直线(曲线)
    if isinstance(thetas, type(np.array([]))):
      x1_min, x1_max = self.p_data_mat[:, 1].min(), self.p_data_mat[:, 1].max()
      x2_min, x2_max = self.p_data_mat[:, 2].min(), self.p_data_mat[:, 2].max()
      xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
      h = self.sigmoid(self.poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(thetas))
      h = h.reshape(xx1.shape)
      ax1.contour(xx1, xx2, h, [0.5], linewidths=3)
    ax1.legend(fontsize=14)
    plt.show()
​
  @staticmethod
  def sigmoid(z):
    return 1.0 / (1 + np.exp(-z))
​
​
if __name__ == '__main__':
  my_logistic_regression = MyLogisticRegression()
  # my_logistic_regression.plot_data(x_label="线性不可分数据集")
​
  thetas, theta_set = my_logistic_regression.gradient_descent_reg(alpha=0.5, reg=0, iterations=500)
  my_logistic_regression.plot_data_reg(thetas=thetas, x_label="$\\lambda$ = {}".format(0))
​
  thetas = np.zeros((my_logistic_regression.p_data_mat.shape[1], 1))
  # 未知错误,有大佬解决可留言
  result = minimize(my_logistic_regression.cost_func_reg, thetas,
           args=(0, ),
           method=None,
           jac=my_logistic_regression.gradient_reg)
  my_logistic_regression.plot_data_reg(thetas=result.x, x_label="$\\lambda$ = {}".format(0))

二分类问题逻辑回归曲线编码实现

import numpy as np
from matplotlib import pyplot as plt
​
from scipy.optimize import minimize
from sklearn.preprocessing import PolynomialFeatures
​
​
class MyLogisticRegression:
  def __init__(self):
    plt.rcParams["font.sans-serif"] = ["SimHei"]
    # 包含数据和标签的数据集
    self.data = np.loadtxt("./data2.txt", delimiter=",")
    self.data_mat = self.data[:, 0:2]
    self.label_mat = self.data[:, 2]
    self.thetas = np.zeros((self.data_mat.shape[1]))
​
    # 生成多项式特征,最高6次项
    self.poly = PolynomialFeatures(6)
    self.p_data_mat = self.poly.fit_transform(self.data_mat)
​
  def cost_func_reg(self, theta, reg):
    """
    损失函数具体实现
    :param theta: 逻辑回归系数
    :param data_mat: 带有截距项的数据集
    :param label_mat: 标签数据集
    :param reg:
    :return:
    """
    m = self.label_mat.size
    label_mat = self.label_mat.reshape(-1, 1)
    h = self.sigmoid(self.p_data_mat.dot(theta))
​
    J = -1 * (1/m)*(np.log(h).T.dot(label_mat) + np.log(1-h).T.dot(1-label_mat))\
      + (reg / (2*m)) * np.sum(np.square(theta[1:]))
    if np.isnan(J[0]):
      return np.inf
    return J[0]
​
  def gradient_reg(self, theta, reg):
    m = self.label_mat.size
    h = self.sigmoid(self.p_data_mat.dot(theta.reshape(-1, 1)))
    label_mat = self.label_mat.reshape(-1, 1)
​
    grad = (1 / m)*self.p_data_mat.T.dot(h-label_mat) + (reg/m)*np.r_[[[0]], theta[1:].reshape(-1, 1)]
    return grad
​
  def gradient_descent_reg(self, alpha=0.01, reg=0, iterations=200):
    """
    逻辑回归梯度下降收敛函数
    :param alpha: 学习率
    :param reg:
    :param iterations: 最大迭代次数
    :return: 逻辑回归系数组
    """
    m, n = self.p_data_mat.shape
    theta = np.zeros((n, 1))
    theta_set = []
​
    for i in range(iterations):
      grad = self.gradient_reg(theta, reg)
      theta = theta - alpha*grad.reshape(-1, 1)
      theta_set.append(theta)
    return theta, theta_set
​
  def plot_data_reg(self, x_label=None, y_label=None, neg_text="negative", pos_text="positive", thetas=None):
    neg = self.label_mat == 0
    pos = self.label_mat == 1
    fig1 = plt.figure(figsize=(12, 8))
    ax1 = fig1.add_subplot(111)
    ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text)
    ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text)
    ax1.set_xlabel(x_label, fontsize=14)
​
    # 描绘逻辑回归直线(曲线)
    if isinstance(thetas, type(np.array([]))):
      x1_min, x1_max = self.p_data_mat[:, 1].min(), self.p_data_mat[:, 1].max()
      x2_min, x2_max = self.p_data_mat[:, 2].min(), self.p_data_mat[:, 2].max()
      xx1, xx2 = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
      h = self.sigmoid(self.poly.fit_transform(np.c_[xx1.ravel(), xx2.ravel()]).dot(thetas))
      h = h.reshape(xx1.shape)
      ax1.contour(xx1, xx2, h, [0.5], linewidths=3)
    ax1.legend(fontsize=14)
    plt.show()
​
  @staticmethod
  def sigmoid(z):
    return 1.0 / (1 + np.exp(-z))
​
​
if __name__ == '__main__':
  my_logistic_regression = MyLogisticRegression()
  # my_logistic_regression.plot_data(x_label="线性不可分数据集")
​
  thetas, theta_set = my_logistic_regression.gradient_descent_reg(alpha=0.5, reg=0, iterations=500)
  my_logistic_regression.plot_data_reg(thetas=thetas, x_label="$\\lambda$ = {}".format(0))
​
  thetas = np.zeros((my_logistic_regression.p_data_mat.shape[1], 1))
  # 未知错误,有大佬解决可留言
  result = minimize(my_logistic_regression.cost_func_reg, thetas,
           args=(0, ),
           method=None,
           jac=my_logistic_regression.gradient_reg)
  my_logistic_regression.plot_data_reg(thetas=result.x, x_label="$\\lambda$ = {}".format(0))

以上就是python 实现逻辑回归的详细内容,更多关于python 实现逻辑回归的资料请关注我们其它相关文章!

(0)

相关推荐

  • python代码实现逻辑回归logistic原理

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 介绍逻辑回归之前,我们先看一问题,有个黑箱,里面有白球和黑球,如何判断它们的比例. 我们从里面抓3个球,2个黑球,1个白球.这时候,有人就直接得出了黑球67%,白球占比33%.这个时候,其实这个人使用了最大似然概率的思想,通俗来讲,

  • python编写Logistic逻辑回归

    用一条直线对数据进行拟合的过程称为回归.逻辑回归分类的思想是:根据现有数据对分类边界线建立回归公式. 公式表示为: 一.梯度上升法 每次迭代所有的数据都参与计算. for 循环次数:         训练 代码如下: import numpy as np import matplotlib.pyplot as plt def loadData(): labelVec = [] dataMat = [] with open('testSet.txt') as f: for line in f.re

  • python sklearn库实现简单逻辑回归的实例代码

    Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression).降维(Dimensionality Reduction).分类(Classfication).聚类(Clustering)等方法.当我们面临机器学习问题时,便可根据下图来选择相应的方法. Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy.Scipy.MatPlotLib之上 代

  • python实现逻辑回归的方法示例

    本文实现的原理很简单,优化方法是用的梯度下降.后面有测试结果. 先来看看实现的示例代码: # coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后的数

  • python实现逻辑回归的示例

    代码 import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_classification def initialize_params(dims): w = np.zeros((dims, 1)) b = 0 return w, b def sigmoid(x): z = 1 / (1 + np.exp(-x)) return z def logi

  • Python利用逻辑回归模型解决MNIST手写数字识别问题详解

    本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题.分享给大家供大家参考,具体如下: 1.MNIST手写识别问题 MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几.可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件. %matplotlib inline import tensorflow as tf import tensorflow.examples.tutori

  • python机器学习理论与实战(四)逻辑回归

    从这节算是开始进入"正规"的机器学习了吧,之所以"正规"因为它开始要建立价值函数(cost function),接着优化价值函数求出权重,然后测试验证.这整套的流程是机器学习必经环节.今天要学习的话题是逻辑回归,逻辑回归也是一种有监督学习方法(supervised machine learning).逻辑回归一般用来做预测,也可以用来做分类,预测是某个类别^.^!线性回归想比大家都不陌生了,y=kx+b,给定一堆数据点,拟合出k和b的值就行了,下次给定X时,就可以计

  • Python实现的逻辑回归算法示例【附测试csv文件下载】

    本文实例讲述了Python实现的逻辑回归算法.分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement Logisti

  • python实现梯度下降和逻辑回归

    本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下 import numpy as np import pandas as pd import os data = pd.read_csv("iris.csv") # 这里的iris数据已做过处理 m, n = data.shape dataMatIn = np.ones((m, n)) dataMatIn[:, :-1] = data.ix[:, :-1] classLabels = data.i

  • Python利用逻辑回归分类实现模板

    Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数. 优点:计算代价不高,易于理解和实现. 缺点:容易欠拟合,分类精度可能不高. 使用数据类型:数值型和标称型数据. 好了,下面开始正文. 算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集. 虽然代码类似于梯度下降,但他是个分类算法 定义sigmoid函数 def sigmoid(x): return 1/(1+np.exp(-x)

  • python 牛顿法实现逻辑回归(Logistic Regression)

    本文采用的训练方法是牛顿法(Newton Method). 代码 import numpy as np class LogisticRegression(object): """ Logistic Regression Classifier training by Newton Method """ def __init__(self, error: float = 0.7, max_epoch: int = 100): ""

随机推荐