Python 敏感词过滤的实现示例

目录
  • 一个简单的实现
  • 使用BSF(宽度优先搜索)进行实现
  • 使用DFA(Deterministic Finite Automaton)进行实现

一个简单的实现

主要是通过循环和replace的方式进行敏感词的替换

class NaiveFilter():

    '''Filter Messages from keywords

    very simple filter implementation

    >>> f = NaiveFilter()
    >>> f.parse("filepath")
    >>> f.filter("hello sexy baby")
    hello **** baby
    '''

    def __init__(self):
        self.keywords = set([])

    def parse(self, path):
        for keyword in open(path):
            self.keywords.add(keyword.strip().decode('utf-8').lower())

    def filter(self, message, repl="*"):
        message = str(message).lower()
        for kw in self.keywords:
            message = message.replace(kw, repl)
        return message

使用BSF(宽度优先搜索)进行实现

对于搜索查找进行了优化,对于英语单词,直接进行了按词索引字典查找。对于其他语言模式,我们采用逐字符查找匹配的一种模式。

BFS:宽度优先搜索方式

class BSFilter:

    '''Filter Messages from keywords

    Use Back Sorted Mapping to reduce replacement times

    >>> f = BSFilter()
    >>> f.add("sexy")
    >>> f.filter("hello sexy baby")
    hello **** baby
    '''

    def __init__(self):
        self.keywords = []
        self.kwsets = set([])
        self.bsdict = defaultdict(set)
        self.pat_en = re.compile(r'^[0-9a-zA-Z]+$')  # english phrase or not

    def add(self, keyword):
        if not isinstance(keyword, str):
            keyword = keyword.decode('utf-8')
        keyword = keyword.lower()
        if keyword not in self.kwsets:
            self.keywords.append(keyword)
            self.kwsets.add(keyword)
            index = len(self.keywords) - 1
            for word in keyword.split():
                if self.pat_en.search(word):
                    self.bsdict[word].add(index)
                else:
                    for char in word:
                        self.bsdict[char].add(index)

    def parse(self, path):
        with open(path, "r") as f:
            for keyword in f:
                self.add(keyword.strip())

    def filter(self, message, repl="*"):
        if not isinstance(message, str):
            message = message.decode('utf-8')
        message = message.lower()
        for word in message.split():
            if self.pat_en.search(word):
                for index in self.bsdict[word]:
                    message = message.replace(self.keywords[index], repl)
            else:
                for char in word:
                    for index in self.bsdict[char]:
                        message = message.replace(self.keywords[index], repl)
        return message

使用DFA(Deterministic Finite Automaton)进行实现

DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
使用了嵌套的字典来实现。

class DFAFilter():

    '''Filter Messages from keywords

    Use DFA to keep algorithm perform constantly

    >>> f = DFAFilter()
    >>> f.add("sexy")
    >>> f.filter("hello sexy baby")
    hello **** baby
    '''

    def __init__(self):
        self.keyword_chains = {}
        self.delimit = '\x00'

    def add(self, keyword):
        if not isinstance(keyword, str):
            keyword = keyword.decode('utf-8')
        keyword = keyword.lower()
        chars = keyword.strip()
        if not chars:
            return
        level = self.keyword_chains
        for i in range(len(chars)):
            if chars[i] in level:
                level = level[chars[i]]
            else:
                if not isinstance(level, dict):
                    break
                for j in range(i, len(chars)):
                    level[chars[j]] = {}
                    last_level, last_char = level, chars[j]
                    level = level[chars[j]]
                last_level[last_char] = {self.delimit: 0}
                break
        if i == len(chars) - 1:
            level[self.delimit] = 0

    def parse(self, path):
        with open(path,encoding='UTF-8') as f:
            for keyword in f:
                self.add(keyword.strip())

    def filter(self, message, repl="*"):
        if not isinstance(message, str):
            message = message.decode('utf-8')
        message = message.lower()
        ret = []
        start = 0
        while start < len(message):
            level = self.keyword_chains
            step_ins = 0
            for char in message[start:]:
                if char in level:
                    step_ins += 1
                    if self.delimit not in level[char]:
                        level = level[char]
                    else:
                        ret.append(repl * step_ins)
                        start += step_ins - 1
                        break
                else:
                    ret.append(message[start])
                    break
            else:
                ret.append(message[start])
            start += 1

        return ''.join(ret)

到此这篇关于Python 敏感词过滤的实现示例的文章就介绍到这了,更多相关Python 敏感词过滤内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现敏感词过滤的4种方法

    在我们生活中的一些场合经常会有一些不该出现的敏感词,我们通常会使用*去屏蔽它,例如:尼玛 -> **,一些骂人的敏感词和一些政治敏感词都不应该出现在一些公共场合中,这个时候我们就需要一定的手段去屏蔽这些敏感词.下面我来介绍一些简单版本的敏感词屏蔽的方法. (我已经尽量把脏话做成图片的形式了,要不然文章发不出去) 方法一:replace过滤 replace就是最简单的字符串替换,当一串字符串中有可能会出现的敏感词时,我们直接使用相应的replace方法用*替换出敏感词即可. 缺点: 文本和敏感词少

  • python用类实现文章敏感词的过滤方法示例

    过滤一遍并将敏感词替换之后剩余字符串中新组成了敏感词语,这种情况就要用递归来解决,直到过滤替换之后的结果和过滤之前一样时才算结束 第一步:建立一个敏感词库(.txt文本) 第二步:编写代码在文章中过滤敏感词(递归实现) # -*- coding: utf-8 -*- # author 代序春秋 import os import chardet # 获取文件目录和绝对路径 curr_dir = os.path.dirname(os.path.abspath(__file__)) # os.path

  • python实现过滤敏感词

    简述: 关于敏感词过滤可以看成是一种文本反垃圾算法,例如  题目:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,则用 星号 * 替换,例如当用户输入「北京是个好城市」,则变成「**是个好城市」  代码: #coding=utf-8 def filterwords(x): with open(x,'r') as f: text=f.read() print text.split('\n') userinput=raw_input('myinput:') for i in

  • 利用Python正则表达式过滤敏感词的方法

    问题描述:很多网站会对用户发帖内容进行一定的检查,并自动把敏感词修改为特定的字符. 技术要点: 1)Python正则表达式模块re的sub()函数: 2)在正则表达式语法中,竖线"|"表示二选一或多选一. 参考代码: 以上这篇利用Python正则表达式过滤敏感词的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 浅谈Python 敏感词过滤的实现

    一个简单的实现 class NaiveFilter(): '''Filter Messages from keywords very simple filter implementation >>> f = NaiveFilter() >>> f.add("sexy") >>> f.filter("hello sexy baby") hello **** baby ''' def __init__(self):

  • python 实现敏感词过滤的方法

    如下所示: #!/usr/bin/python2.6 # -*- coding: utf-8 -*- import time class Node(object): def __init__(self): self.children = None # The encode of word is UTF-8 def add_word(root,word): node = root for i in range(len(word)): if node.children == None: node.c

  • Python 实现王者荣耀中的敏感词过滤示例

    王者荣耀的火爆就不用说了,但是一局中总会有那么几个挂机的,总能看到有些人在骂人,我们发现,当你输入一些常见的辱骂性词汇时,系统会自动将该词变成"*",作为python初学者,就想用python来实现这一功能. 步骤很简单所以就用交互式演示 首先我们要知道王者荣耀有哪些敏感词汇,然后放到一个元组, 第二步用户接收输入的消息 第三步处理敏感词汇 最后输出处理后的消息. >>> words=('金币', '挂', '傻逼', '猪', '你妈') #创建一个敏感词汇库 &g

  • Python 敏感词过滤的实现示例

    目录 一个简单的实现 使用BSF(宽度优先搜索)进行实现 使用DFA(Deterministic Finite Automaton)进行实现 一个简单的实现 主要是通过循环和replace的方式进行敏感词的替换 class NaiveFilter(): '''Filter Messages from keywords very simple filter implementation >>> f = NaiveFilter() >>> f.parse("fil

  • Python基于DFA算法实现内容敏感词过滤

    DFA 算法是通过提前构造出一个 树状查找结构,之后根据输入在该树状结构中就可以进行非常高效的查找. 设我们有一个敏感词库,词酷中的词汇为: 我爱你 我爱他 我爱她 我爱你呀 我爱他呀 我爱她呀 我爱她啊 那么就可以构造出这样的树状结构: 设玩家输入的字符串为:白菊我爱你呀哈哈哈 我们遍历玩家输入的字符串 str,并设指针 i 指向树状结构的根节点,即最左边的空白节点: str[0] = ‘白’ 时,此时 tree[i] 没有指向值为 ‘白’ 的节点,所以不满足匹配条件,继续往下遍历 str[1

  • Jsp敏感词过滤的示例代码

    大部分论坛.网站等,为了方便管理,都进行了关于敏感词的设定. 在多数网站,敏感词一般是指带有敏感政治倾向(或反执政党倾向).暴力倾向.不健康色彩的词或不文明语,也有一些网站根据自身实际情况,设定一些只适用于本网站的特殊敏感词. 比如,当你发贴的时候带有某些事先设定的词时,这个贴是不能发出的.或者这个词被自动替换为星号(*)或叉号(X)等,或者说是被和谐掉了. 在我看来敏感词过滤最重要的是在写过滤词汇的算法,如何过滤出大批量的敏感词,我感觉DFA的思想不错 DFA简介 在实现文字过滤的算法中,DF

  • PHP实现的敏感词过滤方法示例

    本文实例讲述了PHP实现的敏感词过滤方法.分享给大家供大家参考,具体如下: 1.敏感词过滤方法 /** * @todo 敏感词过滤,返回结果 * @param array $list 定义敏感词一维数组 * @param string $string 要过滤的内容 * @return string $log 处理结果 */ function sensitive($list, $string){ $count = 0; //违规词的个数 $sensitiveWord = ''; //违规词 $st

  • java利用DFA算法实现敏感词过滤功能

    前言 敏感词过滤应该是不用给大家过多的解释吧?讲白了就是你在项目中输入某些字(比如输入xxoo相关的文字时)时要能检 测出来,很多项目中都会有一个敏感词管理模块,在敏感词管理模块中你可以加入敏感词,然后根据加入的敏感词去过滤输 入内容中的敏感词并进行相应的处理,要么提示,要么高亮显示,要么直接替换成其它的文字或者符号代替. 敏感词过滤的做法有很多,我简单描述我现在理解的几种: ①查询数据库当中的敏感词,循环每一个敏感词,然后去输入的文本中从头到尾搜索一遍,看是否存在此敏感词,有则做相 应的处理,

  • C#敏感词过滤实现方法

    本文实例讲述了C#敏感词过滤实现方法.分享给大家供大家参考.具体如下: 这两天突然想到了敏感词过滤 就结合网上找到的资料自己写了一个,脏字数量700+(效率不是很高 测试在110多KB的情况下比replace快 3-4倍) 测试结果图 单位:秒 代码如下: System.Text.StringBuilder sb = new System.Text.StringBuilder(text.Length); string filterText = "需要过滤的脏字 以|分开"; //脏字

随机推荐