Python reshape的用法及多个二维数组合并为三维数组的实例

reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变。是对每行元素进行处理

resize(shape) : 与.reshape()功能一致,但修改原数组

In [1]: a = np.arange(20)
#原数组不变
In [2]: a.reshape([4,5])
Out[2]:
array([[ 0, 1, 2, 3, 4],
  [ 5, 6, 7, 8, 9],
  [10, 11, 12, 13, 14],
  [15, 16, 17, 18, 19]])

In [3]: a
Out[3]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
  17, 18, 19])

#修改原数组
In [4]: a.resize([4,5])

In [5]: a
Out[5]:
array([[ 0, 1, 2, 3, 4],
  [ 5, 6, 7, 8, 9],
  [10, 11, 12, 13, 14],
  [15, 16, 17, 18, 19]])

.swapaxes(ax1,ax2) : 将数组n个维度中两个维度进行调换,不改变原数组

In [6]: a.swapaxes(1,0)
Out[6]:
array([[ 0, 5, 10, 15],
  [ 1, 6, 11, 16],
  [ 2, 7, 12, 17],
  [ 3, 8, 13, 18],
  [ 4, 9, 14, 19]])

.flatten() : 对数组进行降维,返回折叠后的一维数组,原数组不变

In [7]: a.flatten()
Out[7]:
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
  17, 18, 19])

将多个二维数组合并为一个三维数组

方法一:

对于两个(或者多个)同一维度的矩阵,直接利用np.array()重新构造一个array,这样可以变相起到扩展维数的作用。例如:

import numpy as np

a = np.array([[1,2,3],[4,5,6]])
b = np.array([[2,2,3],[4,5,6]])
c = np.array([[3,2,3],[4,5,6]])
print('矩阵a:\n',a)
print('维数:',a.shape)

com = np.array([a,b,c])
print('合并矩阵:\n',com)
print('维数:',com.shape)

输出结果为:

矩阵a:
 [[1 2 3]
 [4 5 6]]
维数: (2, 3)
合并矩阵:
 [[[1 2 3]
 [4 5 6]]

 [[2 2 3]
 [4 5 6]]

 [[3 2 3]
 [4 5 6]]]
维数: (3, 2, 3)

方法二:

但是,如果两个array,使用方法一时会出现如下结果:

import numpy as np

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])

com = np.array([aa,a])
print('合并矩阵:\n',com)
print('维数:',com.shape)

输出结果:

合并矩阵:
 [array([[[1, 2, 3],
  [4, 5, 6]],

  [[2, 2, 3],
  [4, 5, 6]],

  [[3, 2, 3],
  [4, 5, 6]]])
 array([[4, 2, 3],
  [4, 5, 6]])]
维数: (2,)

可以看到:输出的维数不对,以上方法就不适用了。

那么,我们就需要利用np.append和array.reshape()函数对数组进行拼接之后重组,具体实现如下:

import numpy as np

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])
data = np.append(aa,a)#先拼接成一个行向量
print(data)

dim = aa.shape#获取原矩阵的维数
print('原矩阵维数:',dim)
data1 = data.reshape(dim[0]+1,dim[1],dim[2])#再通过原矩阵的维数重新组合

print('合并矩阵:\n',data1)
print('维数:',data1.shape)

现在来看一下用reshape将二维数据升为三维后的数据分布情况:

import numpy as np
b = np.arange(36).reshape((6,6))
b1 = b.reshape(2,3,6)

b的元素:

b1的元素:

可以看到,原来6*6的矩阵被分为了2个3*6的矩阵。每一行的数据分布并没有改变,只是将前3行划为一个维度,然后将后三行划为另一个维度。

b1.reshape(6,6)

如果用这条命令,则数据又被还原了回去,与b的一样。

b1.reshape(3,12)

如果用的是reshape(3,12),则相当于将数据首先拉伸为1维的,然后再将一维数据重组为3*12

方法三:

相比于前两种方法,这种方法可谓“曲线救国”之典范,具体思路是:先转化成list,拼接后再转化回去。

这是因为list中的append()函数可以在添加函数的时候不改变原来list的维度。虽然没有对这种方法进行一个速度测试,但直觉来看时间复杂度挺高的,建议慎用。

aa = np.array([[[1,2,3],[4,5,6]],[[2,2,3],[4,5,6]],[[3,2,3],[4,5,6]]])
a = np.array([[4,2,3],[4,5,6]])

#将array转换成list
aa = aa.tolist(aa)
a = a.list(a)

aa.append(a)#注意与方法二中np.append()用法的区别
com = np.array(aa)
print(com.shape)

输出结果:

合并矩阵:
  [[[1 2 3]
  [4 5 6]]

  [[2 2 3]
  [4 5 6]]

  [[3 2 3]
  [4 5 6]]

  [[4 2 3]
  [4, 5, 6]]]
维数: (4,2,3)

这里注意:

两种类型的相互转换函数:

array转list:a = a.tolist()

list转array:a =np.array(a)

以上这篇Python reshape的用法及多个二维数组合并为三维数组的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python中创建二维数组

    二维数组 二维数组本质上是以数组作为数组元素的数组,即"数组的数组",类型说明符 数组名[常量表达式][常量表达式].二维数组又称为矩阵,行列数相等的矩阵称为方阵.对称矩阵a[i][j] = a[j][i],对角矩阵:n阶方阵主对角线外都是零元素. Python中创建二维数组 Python中的列表list可以当做一维数组使用,但是没有直接的定义使用二维数组.如果直接使用a = [][]会产生SyntaxError: invalid syntax语法不正确错误. 一般Python中创建二

  • Numpy之reshape()使用详解

    如下所示: Numpy中reshape的使用方法为:numpy.reshape(a, newshape, order='C') 参数详解: 1.a: type:array_like(伪数组,可以看成是对数组的扩展,但是不影响原始数组.) 需要reshape的array 2.newshape:新的数组 新形状应与原形状兼容.如果是整数,那么结果将是该长度的一维数组.一个形状尺寸可以是-1.在本例中,值是 从数组的长度和剩余维度推断出来的. 3.order: 可选为(C, F, A) C: 按照行来

  • Python实现把多维数组展开成DataFrame

    如下所示: import numpy as np import pandas as pd ################# 准备数据 ################# a1 = np.arange(1,101) a3 = a1.reshape((2,5,10)) a3 ''' array([[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [ 21, 22, 23, 24, 25, 26

  • Python numpy实现二维数组和一维数组拼接的方法

    撰写时间:2017.5.23 一维数组 1.numpy初始化一维数组 a = np.array([1,2,3]); print a.shape 输出的值应该为(3,) 二维数组 2.numpy初始化二维数组 a = np.array([[1,2,3]]); b = np.array([[1],[2],[3]]); print a.shape//(1,3) print b.shape//(3,1) 注意(3,)和(3,1)的数组是不一样的,前者是一维数组,后者是二维数组. 拼接 3.numpy有很

  • Python中的二维数组实例(list与numpy.array)

    关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a

  • Python reshape的用法及多个二维数组合并为三维数组的实例

    reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变.是对每行元素进行处理 resize(shape) : 与.reshape()功能一致,但修改原数组 In [1]: a = np.arange(20) #原数组不变 In [2]: a.reshape([4,5]) Out[2]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]])

  • python实现把两个二维array叠加成三维array示例

    遇到这样一个需求:程序中每次循环生成一个二维array,需要把每次循环的二维array叠加成一个三维的array,例如有如下两个矩阵: 组合成以下这种形式: 这样组合之后,有一个非常大的优点就是:保持原有的二维array的形式不变,便于以后取出,比如说我想从C中取出A,只需要执行:A=C[0,:]即可. 但是百度之后发现,在python中,numpy函数包中并没有对应的函数来实现三维array中不断添加二维array(有知道这个函数的欢迎在评论区告诉我) 这里,提供两种"曲线救国"的解

  • Python使用min、max函数查找二维数据矩阵中最小、最大值的方法

    本文实例讲述了Python使用min.max函数查找二维数据矩阵中最小.最大值的方法.分享给大家供大家参考,具体如下: 简单使用min.max函数来得到二维数据矩阵中的最大最小值,很简单,这是因为工作需要用到一个东西所以先简单来写了一下: #!usr/bin/env python #encoding:utf-8 ''''' __Author__:沂水寒城 功能:找出来随机生成矩阵中的最大.最小值 ''' import time import random def random_matrix_ge

  • Python使用MyQR制作专属动态彩色二维码功能

    Python中有一个非常有趣好玩的库MyQR,不仅可以制作各种漂亮的二维码,还可以生成动态彩色二维码. MyQR是一个能够生成自定义二维码的第三方库,你可以根据需要生成普通二维码.带图片的艺术二维码,也可以生成动态二维码. 生成动态二维码 效果图如下: 二维码扫描上图看看 我们首先要安装MyQR库,直接用pip3 install myqr(or MyQR).需要注意的是MyQR依赖于Python3,在Python2的环境下可能无法正常运行. 这个库提供了两种使用方法,一种是直接使用命令行的方式,

  • python二维列表一维列表的互相转换实例

    二维列表转一维列表 from compiler.ast import flatten a=[[1,2],[5,6]] print(flatten(a)) 结果:[1, 2, 5, 6] 一维列表转二维列表 a=[1,2,5,6] b=[3,4,8,9] print(zip(a,b)) 结果: [(1, 3), (2, 4), (5, 8), (6, 9)] 以上这篇python二维列表一维列表的互相转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python用quad、dblquad实现一维二维积分的实例详解

    背景: python函数库scipy的quad.dblquad实现一维二维积分的范例.需要注意dblquad的积分顺序问题. 代码: import numpy as np from scipy import integrate def half_circle(x): """ 原心:(1,0),半径为1 半圆函数:(x-1)^2+y^2 = 1 """ return (1-(x-1)**2)**0.5 """ 梯形法求

  • Python利用myqr库创建自己的二维码

    前言 相信朋友们都看过各种群里钓鱼的涩图二维码吧(手动滑稽),今天学了一下制作方式(myqr库的使用),在这里分享一下这个整活利器. MyQR是一个能够生成自定义二维码的第三方库,可以根据需要生成普通二维码.带图片的艺术二维码,也可以生成动态二维码 首先配置好python3的环境(也可以用anaconda)和编译器(我用的pycharm). pip安装一下myqr库: pip install myqr pycharm中新建项目新建文件后 from MyQR import myqr myqr.ru

  • python 使用MyQR和qrcode来制作二维码

    前言   今天下午无聊,突发奇想想玩玩二维码,于是就结合着上学期学的标识技术,用Python制作了一下二维码. 一.二维码   二维码( 2 − D i m e n s i o n a l (2-Dimensional(2−Dimensional B a r c o d e ) Barcode)Barcode),又称二维条形码.它是用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形来记录数据符号信息的:在代码编制上巧妙地利用构成计算机内部逻辑基础的"0"."

  • Python一行代码实现生成和读取二维码

    目录 生成二维码 读取二维码 补充 总结 二维码是用某种特定的几何图形按一定规律在平面(二维方向上)分布的.黑白相间的.记录数据符号信息的图形. 二维码被称为快速响应码,可能看起来很简单,但它们能够存储大量数据.无论扫描二维码时包含多少数据,用户都可以立即访问信息. 近些年二维码也是迅速普及,目前已经成为了我们生活中的一部分,它有许多应用场景: 信息获取(名片.地图.WIFI密码.资料) 网站跳转(跳转到微博.手机网站.网站) 广告推送(用户扫码,直接浏览商家推送的视频.音频广告) 手机电商(用

  • PHP实现将MySQL重复ID二维数组重组为三维数组的方法

    本文实例讲述了PHP实现将MySQL重复ID二维数组重组为三维数组的方法.分享给大家供大家参考,具体如下: 应用场景 MYSQL在使用关联查询时,比如 产品表 与 产品图片表关联,一个产品多张产品图片,关联查询结果如下: $arr=[ ['id'=>1,'img'=>'img1'], ['id'=>1,'img'=>'img2'], ['id'=>1,'img'=>'img3'], ['id'=>2,'img'=>'img1'], ['id'=>2,'

随机推荐