人工智能深度学习OpenAI baselines的使用方法

OpenAI,由诸多硅谷大亨联合建立的人工智能非营利组织。2015年马斯克与其他硅谷科技大亨进行连续对话后,决定共同创建OpenAI,希望能够预防人工智能的灾难性影响,推动人工智能发挥积极作用

OpenAI、DeepMind,伯克利三个可以说是强化学习的推动者,其中OpenAI 为很多算法都写了baselines。本文讲开始运行例子,以A2C算法为例子(具体a2c算法原理后续讲解):

首先就是安装gym环境,具体直接参考OpenAI的github:

https://github.com/openai/gym

本文使用了Atari游戏,那么在gym中需要安装,不然有的游戏可能不会默认安装:

pip install -e '.[atari]'

这是原话:

The Atari environments are a variety of Atari video games. If you didn’t do the full install, you can install dependencies via pip install -e ‘.[atari]’ (you’ll need cmake installed) and then get started as follow:

import gym
env = gym.make('SpaceInvaders-v0')
env.reset()
env.render()

下一步就是clone baselines的仓库了:

git clone https://github.com/openai/baselines.git

然后进入目录进行运行:

目录如下:

total 48
drwxrwxr-x  6 jqw  jqw  4096 Jun  8 16:50 .
drwxrwxr-x  3 jqw  jqw  4096 Jun  7 11:07 ..
drwxrwxr-x 15 jqw  jqw  4096 Jun  8 19:42 baselines
drwxr-xr-x  2 root root 4096 Jun  8 16:50 baselines.egg-info
drwxrwxr-x  2 jqw  jqw  4096 Jun  7 11:08 data
-rw-rw-r--  1 jqw  jqw   504 Jun  7 11:08 Dockerfile
drwxrwxr-x  8 jqw  jqw  4096 Jun  7 11:08 .git
-rw-rw-r--  1 jqw  jqw   285 Jun  7 11:08 .gitignore
-rw-rw-r--  1 jqw  jqw  1087 Jun  7 11:08 LICENSE
-rw-rw-r--  1 jqw  jqw  3417 Jun  7 11:08 README.md
-rw-rw-r--  1 jqw  jqw   957 Jun  7 11:08 setup.py
-rw-rw-r--  1 jqw  jqw   224 Jun  7 11:08 .travis.yml
python3 -m baselines.a2c.run_atari

就可以了,其他的算法同样的道理。

注意:此处使用给的是python3,
那么对应需要在python3下安装numpy, matplotlib, tensorflow, 等一系列库,此处省略

参考:

https://github.com/openai/gym

https://github.com/openai/baselines

以上就是人工智能深度学习OpenAI baselines的使用方法的详细内容,更多关于人工智能OpenAI baselines的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python人工智能实战之对话机器人的实现

    目录 背景 用到的技术 主要流程 代码模块 Joke对象 爬虫抓取笑话 代码实现 保存到sqlite数据库 抓取笑话并保存到数据库 背景 当我慢慢的开在高速公路上,宽敞的马路非常的拥挤!这时候我喜欢让百度导航的小度给我讲笑话,但她有点弱,每次只能讲一个. 百度号称要发力人工智能,成为国内人工智能的领军企业.但从小度的智商和理解能力上,我对此非常怀疑. 所以我们干脆用Python来开发一个可以讲笑话的机器人,可以自由定制功能,想讲几个笑话就讲几个笑话. 用到的技术 本文用到以下技术: 爬虫 - 抓

  • 人工智能-Python实现岭回归

    1 概述 1.1 线性回归 对于一般地线性回归问题,参数的求解采用的是最小二乘法,其目标函数如下: 参数 w 的求解,也可以使用如下矩阵方法进行: 这个公式看着吓人,其实推导过程简单由(推导而来,纸老虎)对于矩阵 X ,若某些列线性相关性较大(即训练样本中某些属性线性相关),就会导致的值接近 0 ,在计算时就会出现不稳定性.结论 : 传统的基于最小二乘的线性回归法缺乏稳定性. 1.2 岭回归 岭回归的优化目标:  对应的矩阵求解方法为:          岭回归(ridge regression

  • 人工智能——K-Means聚类算法及Python实现

    目录 1 概述 1.1 无监督学习 1.2 聚类 1.3 K-Mean均值算法 2 K-Mean均值算法 2.1 引入 2.2 针对大样本集的改进算法:Mini Batch K-Means 2.3 图像 3 案例1 3.1 代码 3.2 结果 4 案例2 4.1 案例——数据 4.2 代码 4.3 结果 4.4 拓展&&改进 1 概述 1.1 无监督学习 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负样本的决策边界,在这里的监督学习中,我们有一系列标签

  • 人工智能深度学习OpenAI baselines的使用方法

    OpenAI,由诸多硅谷大亨联合建立的人工智能非营利组织.2015年马斯克与其他硅谷科技大亨进行连续对话后,决定共同创建OpenAI,希望能够预防人工智能的灾难性影响,推动人工智能发挥积极作用 OpenAI.DeepMind,伯克利三个可以说是强化学习的推动者,其中OpenAI 为很多算法都写了baselines.本文讲开始运行例子,以A2C算法为例子(具体a2c算法原理后续讲解): 首先就是安装gym环境,具体直接参考OpenAI的github: https://github.com/open

  • python人工智能深度学习算法优化

    目录 1.SGD 2.SGDM 3.Adam 4.Adagrad 5.RMSProp 6.NAG 1.SGD 随机梯度下降 随机梯度下降和其他的梯度下降主要区别,在于SGD每次只使用一个数据样本,去计算损失函数,求梯度,更新参数.这种方法的计算速度快,但是下降的速度慢,可能会在最低处两边震荡,停留在局部最优. 2.SGDM SGM with Momentum:动量梯度下降 动量梯度下降,在进行参数更新之前,会对之前的梯度信息,进行指数加权平均,然后使用加权平均之后的梯度,来代替原梯度,进行参数的

  • Python人工智能深度学习CNN

    目录 1.CNN概述 2.卷积层 3.池化层 4.全连层 1.CNN概述 CNN的整体思想,就是对图片进行下采样,让一个函数只学一个图的一部分,这样便得到少但是更有效的特征,最后通过全连接神经网络对结果进行输出. 整体架构如下: 输入图片 →卷积:得到特征图(激活图) →ReLU:去除负值 →池化:缩小数据量同时保留最有效特征 (以上步骤可多次进行) →输入全连接神经网络 2.卷积层 CNN-Convolution 卷积核(或者被称为kernel, filter, neuron)是要被学出来的,

  • python人工智能深度学习入门逻辑回归限制

    目录 1.逻辑回归的限制 2.深度学习的引入 3.深度学习的计算方式 4.神经网络的损失函数 1.逻辑回归的限制 逻辑回归分类的时候,是把线性的函数输入进sigmoid函数进行转换,后进行分类,会在图上画出一条分类的直线,但像下图这种情况,无论怎么画,一条直线都不可能将其完全分开. 但假如我们可以对输入的特征进行一个转换,便有可能完美分类.比如: 创造一个新的特征x1:到(0,0)的距离,另一个x2:到(1,1)的距离.这样可以计算出四个点所对应的新特征,画到坐标系上如以下右图所示.这样转换之后

  • Python人工智能深度学习模型训练经验总结

    目录 一.假如训练集表现不好 1.尝试新的激活函数 2.自适应学习率 ①Adagrad ②RMSProp ③ Momentum ④Adam 二.在测试集上效果不好 1.提前停止 2.正则化 3.Dropout 一.假如训练集表现不好 1.尝试新的激活函数 ReLU:Rectified Linear Unit 图像如下图所示:当z<0时,a = 0, 当z>0时,a = z,也就是说这个激活函数是对输入进行线性转换.使用这个激活函数,由于有0的存在,计算之后会删除掉一些神经元,使得神经网络变窄.

  • Python人工智能深度学习RNN模型结构流程

    目录 1.RNN基础模型 2.LSTM 3.流程结构 1.RNN基础模型 RNN主要特点是,在DNN隐藏层的输出内容会被存储,并且可以作为输入给到下一个神经元. 如下图所示,当"台北"这个词被输入的时候,前面的词有可能是"离开",有可能是"到达",如果把上一次输入的"离开",所得的隐藏层内容,输入给下一层,这样就有可能区分开是"离开台北",还是"到达台北". 如果隐藏层存储的内容并给下次

  • Python-OpenCV深度学习入门示例详解

    目录 0. 前言 1. 计算机视觉中的深度学习简介 1.1 深度学习的特点 1.2 深度学习大爆发 2. 用于图像分类的深度学习简介 3. 用于目标检测的深度学习简介 4. 深度学习框架 keras 介绍与使用 4.1 keras 库简介与安装 4.2 使用 keras 实现线性回归模型 4.3 使用 keras 进行手写数字识别 小结 0. 前言 深度学习已经成为机器学习中最受欢迎和发展最快的领域.自 2012 年深度学习性能超越机器学习等传统方法以来,深度学习架构开始快速应用于包括计算机视觉

  • 使用Node.js在深度学习中做图片预处理的方法

    背景 最近在做一个和对象识别相关的项目,由于团队内技术栈偏向 JavaScript,在已经用 Python 和 Tensorflow 搭建好了对象识别服务器后,为了不再增加团队成员维护成本,所以尽可能将训练和识别之外的任务交给 Node.js 来做,今天要讲到的图片预处理就是其中之一. 这里对还不了解深度学习的人就几个概念做个简单的解释 对象识别:对象识别可理解为计算机在一张图片中发现某个或某些指定的物体,比如找到里面所有的狗. 训练:计算机学会对象识别这个本领就像人类学会说话一样,需要不断地练

  • python开启摄像头以及深度学习实现目标检测方法

    最近想做实时目标检测,需要用到python开启摄像头,我手上只有两个uvc免驱的摄像头,性能一般.利用python开启摄像头费了一番功夫,主要原因是我的摄像头都不能用cv2的VideCapture打开,这让我联想到原来opencv也打不开Android手机上的摄像头(后来采用QML的Camera模块实现的).看来opencv对于摄像头的兼容性仍然不是很完善. 我尝了几种办法:v4l2,v4l2_capture以及simpleCV,都打不开.最后采用pygame实现了摄像头的采集功能,这里直接给大

  • 深度学习环境搭建anaconda+pycharm+pytorch的方法步骤

    目录 显卡 驱动 cuda anaconda 1. 下载安装 2. 安装pytorch虚拟环境 3. conda常用指令 pycahrm / jupyter 下载安装 如何建好的虚拟环境的解释器找出来指派给代码? 本文将详细介绍一下如何搭建深度学习所需要的实验环境. 这个框架分为以下六个模块 显卡 简单理解这个就是我们常说的GPU,显卡的功能是一个专门做矩阵运算的部件,用于显示方面的运算,现在神经网络中绝大操作都是对矩阵的运算,所以我们当然可以将显卡的矩阵运算功能应用起来,来提高计算速度. 驱动

随机推荐