详解Python3中yield生成器的用法

任何使用yield的函数都称之为生成器,如:

def count(n):
  while n > 0:
    yield n  #生成值:n
    n -= 1

另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器。

使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值。

c = count(5)
c.__next__() #python 3.4.3要使用c.__next__()不能使用c.next()
>>> 5
c.__next__()
>>>4

生成器函数只有在调用__next()__方法的时候才开始执行函数里面的语句,比如:

def count(n):
  print ( "cunting" )
  while n > 0:
    yield n  #生成值:n
    n -= 1

在调用count函数时:c=count(5),并不会打印"counting"只有等到调用c.__next__()时才真正执行里面的语句。每次调用__next__()方法时,count函数会运行到语句yield n处为止,__next__()的返回值就是生成值n,再次调用__next__()方法时,函数继续执行yield之后的语句(熟悉Java的朋友肯定知道Thread.yield()方法,作用是暂停当前线程的运行,让其他线程执行),如:

def count(n):
  print ("cunting" )
  while n > 0:
    print ('before yield')
    yield n  #生成值:n
    n -= 1
    print ('after yield' )

上述代码在第一次调用__next__方法时,并不会打印"after yield"。如果一直调用__next__方法,当执行到没有可迭代的值后,程序就会报错:

Traceback (most recent call last): File "", line 1, in StopIteration
所以一般不会手动的调用__next__方法,而使用for循环:

for i in count(5):
  print (i),

实例: 用yield生成器模拟Linux中命令:tail -f file | grep python 用于查找监控日志文件中出现有python字样的行。

import time
def tail(f):
  f.seek(0,2)#移动到文件EOF
  while True:
    line = f.readline() #读取文件中新的文本行
    if not line:
      time.sleep(0.1)
      continue
    yield line  

def grep(lines,searchtext):
  for line in lines:
    if searchtext in line:
      yield line 

flog = tail(open('warn.log'))
pylines = grep(flog,'python')
for line in pylines:
  print ( line, )
#当此程序运行时,若warn.log文件中末尾有新增一行,且该一行包含python,该行就会被打印出来
#若打开warn.log时,末尾已经有了一行包含python,该行不会被打印,因为上面是f.seek(0,2)移动到了文件EOF处
#故,上面程序实现了tail -f warn.log | grep 'python'的功能,动态实时检测warn.log中是否新增现了
#新的行,且该行包含python

用yield实现斐波那契数列:

def fibonacci():
  a=b=1
  yield a
  yield b
  while True:
    a,b = b,a+b
    yield b

调用:

for num in fibonacci():
  if num > 100:
    break
  print (num),

yield中return的作用:
作为生成器,因为每次迭代就会返回一个值,所以不能显示的在生成器函数中return 某个值,包括None值也不行,否则会抛出“SyntaxError”的异常,但是在函数中可以出现单独的return,表示结束该语句。
通过固定长度的缓冲区不断读文件,防止一次性读取出现内存溢出的例子:

def read_file(path):
  size = 1024
  with open(path,'r') as f:
    while True:
      block = f.read(SIZE)
      if block:
        yield block
      else:
        return

如果是在函数中return 具体某个值,就直接抛异常了

>>> def test_return():
...   yield 4
...   return 0
...
 File "<stdin>", line 3
SyntaxError: 'return' with argument inside generator

例子

下面来看几段代码示例:

例1:

>>> def mygenerator():
...   print 'start...'
...   yield 5
...
>>> mygenerator()      //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停
<generator object mygenerator at 0xb762502c>
>>> mygenerator().next()   //调用next()即可让函数运行.
start...
5
>>>

如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:

例2:

>>> def fun2():
...   print 'first'
...   yield 5
...   print 'second'
...   yield 23
...   print 'end...'
...
>>> g1 = fun2()
>>> g1.next()       //第一次运行,暂停在yield 5
first
5
>>> g1.next()       //第二次运行,暂停在yield 23
second
23
>>> g1.next()       //第三次运行,由于之后没有yield,再次next()就会抛出错误
end...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
>>>

为什么yield 5会输出5,yield 23会输出23?
我们猜测可能是因为yield是表达式,存在返回值.
那么这是否可以认为yield 5的返回值一定是5吗?实际上并不是这样,这个与send函数存在一定的关系,这个函数实质上与next()是相似的,区别是send是传递yield表达式的值进去,而next不能传递特定的值,只能传递None进去,因此可以认为g.next()和g.send(None)是相同的。见例3:

例3:

>>> def fun():
...   print 'start...'
...   m = yield 5
...   print m
...   print 'middle...'
...   d = yield 12
...   print d
...   print 'end...'
...
>>> m = fun()       //创建一个对象
>>> m.next()        //会使函数执行到下一个yield前
start...
5
>>> m.send('message')   //利用send()传递值
message          //send()传递进来的
middle...
12
>>> m.next()
None            //可见next()返回值为空
end...
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
StopIteration
(0)

相关推荐

  • Python yield使用方法示例

    1. iterator叠代器最简单例子应该是数组下标了,且看下面的c++代码: 复制代码 代码如下: int array[10];for ( int i = 0; i < 10; i++ )    printf("%d ", array[i]); 叠代器工作在一个容器里(array[10]),它按一定顺序(i++)从容器里取出值(array[i])并进行操作(printf("%d ", array[i]). 上面的代码翻译成python: 复制代码 代码如下:

  • 浅析Python中yield关键词的作用与用法

    前言 为了理解yield是什么,首先要明白生成器(generator)是什么,在讲生成器之前先说说迭代器(iterator),当创建一个列表(list)时,你可以逐个的读取每一项,这就叫做迭代(iteration). >>> mylist = [1, 2, 3] >>> for i in mylist : ... print(i) 1 2 3 mylist 是一个可迭代的对象.当使用一个列表生成式来建立一个列表的时候,就建立了一个可迭代的对象: >>>

  • Python中的生成器和yield详细介绍

    列表推导与生成器表达式 当我们创建了一个列表的时候,就创建了一个可以迭代的对象: 复制代码 代码如下: >>> squares=[n*n for n in range(3)] >>> for i in squares:  print i   0 1 4 这种创建列表的操作很常见,称为列表推导.但是像列表这样的迭代器,比如str.file等,虽然用起来很方便,但有一点,它们是储存在内存中的,如果值很大,会很麻烦. 而生成器表达式不同,它执行的计算与列表包含相同,但会迭代的

  • Python yield 小结和实例

    一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行.虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行.看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值. yield

  • Python 深入理解yield

    只是粗略的知道yield可以用来为一个函数返回值塞数据,比如下面的例子: Code highlighting produced by Actipro CodeHighlighter (freeware) http://www.CodeHighlighter.com/ -->def addlist(alist):    for i in alist:        yield i + 1取出alist的每一项,然后把i + 1塞进去.然后通过调用取出每一项: Code highlighting p

  • Python中生成器和yield语句的用法详解

    在开始课程之前,我要求学生们填写一份调查表,这个调查表反映了它们对Python中一些概念的理解情况.一些话题("if/else控制流" 或者 "定义和使用函数")对于大多数学生是没有问题的.但是有一些话题,大多数学生只有很少,或者完全没有任何接触,尤其是"生成器和yield关键字".我猜这对大多数新手Python程序员也是如此. 有事实表明,在我花了大功夫后,有些人仍然不能理解生成器和yield关键字.我想让这个问题有所改善.在这篇文章中,我将解

  • python中的yield使用方法

    今天在看其他同事的代码时,发现一个没使用过的python关键字 :yield 先问了一下同事,听他说了几句,有个模糊的印象,仅仅是模糊而已.于是自己去搜搜资料看.看了半天,逐渐清晰了.不过在工作机制以及应用上还是有点迷茫.嗯,先把初始接触的印象记下来吧. yield 简单说来就是一个生成器(Generator).生成器是这样一个函数:它记住上一次返回时在函数体中的位置.对生成器函数的第二次(或第 n 次)调用跳转至该函数中间,而上次调用的所有局部变量都保持不变. 你看到某个函数包含了yield,

  • Python中的yield浅析

    在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor). 一.迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表.元祖等等,实际上,for循环可用于任何"可迭代对象",这其实就是迭代器 迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发StopIteration.任何这类的对象在Python中都可以用

  • Python yield 使用方法浅析

    如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数: 清单 1. 简单输出斐波那契數列前 N 个数 def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 执行 fab(5),我们可以得到如下输出: >>

  • Python yield 使用浅析

    初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到底用来做什么,为什么要设计 yield ?本文将由浅入深地讲解 yield 的概念和用法,帮助读者体会 Python 里 yield 简单而强大的功能. 您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来

随机推荐