Python 虚拟机集合set实现原理及源码解析

目录
  • 深入理解 Python 虚拟机:集合(set)的实现原理及源码剖析
    • 数据结构介绍
    • 创建集合对象
    • 往集合当中加入数据
    • 哈希表数组扩容
    • 从集合当中删除元素 pop
    • 总结

深入理解 Python 虚拟机:集合(set)的实现原理及源码剖析

在本篇文章当中主要给大家介绍在 cpython 虚拟机当中的集合 set 的实现原理(哈希表)以及对应的源代码分析。

数据结构介绍

typedef struct {
    PyObject_HEAD
    Py_ssize_t fill;            /* Number active and dummy entries*/
    Py_ssize_t used;            /* Number active entries */
    /* The table contains mask + 1 slots, and that's a power of 2.
     * We store the mask instead of the size because the mask is more
     * frequently needed.
     */
    Py_ssize_t mask;
    /* The table points to a fixed-size smalltable for small tables
     * or to additional malloc'ed memory for bigger tables.
     * The table pointer is never NULL which saves us from repeated
     * runtime null-tests.
     */
    setentry *table;
    Py_hash_t hash;             /* Only used by frozenset objects */
    Py_ssize_t finger;          /* Search finger for pop() */
    setentry smalltable[PySet_MINSIZE]; // #define PySet_MINSIZE 8
    PyObject *weakreflist;      /* List of weak references */
} PySetObject;
typedef struct {
    PyObject *key;
    Py_hash_t hash;             /* Cached hash code of the key */
} setentry;
static PyObject _dummy_struct;
#define dummy (&_dummy_struct)

上面的数据结果用图示如下图所示:

上面各个字段的含义如下所示:

  • dummy entries :如果在哈希表当中的数组原来有一个数据,如果我们删除这个 entry 的时候,对应的位置就会被赋值成 dummy,与 dummy 有关的定义在上面的代码当中已经给出,dummy 对象的哈希值等于 -1。
  • 明白 dummy 的含义之后,fill 和 used 这两个字段的含义就比较容易理解了,used 就是数组当中真实有效的对象的个数,fill 还需要加上 dummy 对象的个数。
  • mask,数组的长度等于 2n2^n2n,mask 的值等于 2n−12^n - 12n−1 。
  • table,实际保存 entry 对象的数组。
  • hash,这个值对 frozenset 有用,保存计算出来的哈希值。如果你的数组很大的话,计算哈希值其实也是一个比较大的开销,因此可以将计算出来的哈希值保存下来,以便下一次求的时候可以将哈希值直接返回,这也印证了在 python 当中为什么只有 immutable 对象才能够放入到集合和字典当中,因为哈希值计算一次保存下来了,如果再加入对象对象的哈希值也会变化,这样做就会发生错误了。
  • finger,主要是用于记录下一个开始寻找被删除对象的下标。
  • smalltable,默认的小数组,cpython 设置的一半的集合对象不会超过这个大小(8),因此在申请一个集合对象的时候直接就申请了这个小数组的内存大小。
  • weakrelist,这个字段主要和垃圾回收有关,这里暂时不进行详细说明。

创建集合对象

首先先了解一下创建一个集合对象的过程,和前面其他的对象是一样的,首先先申请内存空间,然后进行相关的初始化操作。

这个函数有两个参数,使用第一个参数申请内存空间,然后后面一个参数如果不为 NULL 而且是一个可迭代对象的话,就将这里面的对象加入到集合当中。

static PyObject *
make_new_set(PyTypeObject *type, PyObject *iterable)
{
    PySetObject *so = NULL;
    /* create PySetObject structure */
    so = (PySetObject *)type->tp_alloc(type, 0);
    if (so == NULL)
        return NULL;
    // 集合当中目前没有任何对象,因此 fill 和 used 都是 0
    so->fill = 0;
    so->used = 0;
    // 初始化哈希表当中的数组长度为 PySet_MINSIZE 因此 mask = PySet_MINSIZE - 1
    so->mask = PySet_MINSIZE - 1;
    // 让 table 指向存储 entry 的数组
    so->table = so->smalltable;
    // 将哈希值设置成 -1 表示还没有进行计算
    so->hash = -1;
    so->finger = 0;
    so->weakreflist = NULL;
    // 如果 iterable 不等于 NULL 则需要将它指向的对象当中所有的元素加入到集合当中
    if (iterable != NULL) {
        // 调用函数 set_update_internal 将对象 iterable 当中的元素加入到集合当中
        if (set_update_internal(so, iterable)) {
            Py_DECREF(so);
            return NULL;
        }
    }
    return (PyObject *)so;
}

往集合当中加入数据

首先我们先大致理清楚往集合当中插入数据的流程:

  • 首先根据对象的哈希值,计算需要将对象放在哪个位置,也就是对应数组的下标。
  • 查看对应下标的位置是否存在对象,如果不存在对象则将数据保存在对应下标的位置。
  • 如果对应的位置存在对象,则查看是否和当前要插入的对象相等,则返回。
  • 如果不相等,则使用类似于线性探测的方式去寻找下一个要插入的位置(具体的实现可以查看相关代码,具体的操作为线性探测法 + 开放地址法)。
static PyObject *
set_add(PySetObject *so, PyObject *key)
{
    if (set_add_key(so, key))
        return NULL;
    Py_RETURN_NONE;
}
static int
set_add_key(PySetObject *so, PyObject *key)
{
    setentry entry;
    Py_hash_t hash;
    // 这里就查看一下是否是字符串,如果是字符串直接拿到哈希值
    if (!PyUnicode_CheckExact(key) ||
        (hash = ((PyASCIIObject *) key)->hash) == -1) {
      	// 如果不是字符串则需要调用对象自己的哈希函数求得对应的哈希值
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }
    // 创建一个 entry 对象将这个对象加入到哈希表当中
    entry.key = key;
    entry.hash = hash;
    return set_add_entry(so, &entry);
}
static int
set_add_entry(PySetObject *so, setentry *entry)
{
    Py_ssize_t n_used;
    PyObject *key = entry->key;
    Py_hash_t hash = entry->hash;
    assert(so->fill <= so->mask);  /* at least one empty slot */
    n_used = so->used;
    Py_INCREF(key);
    // 调用函数 set_insert_key 将对象插入到数组当中
    if (set_insert_key(so, key, hash)) {
        Py_DECREF(key);
        return -1;
    }
    // 这里就是哈希表的核心的扩容机制
    if (!(so->used > n_used && so->fill*3 >= (so->mask+1)*2))
        return 0;
    // 这是扩容大小的逻辑
    return set_table_resize(so, so->used>50000 ? so->used*2 : so->used*4);
}
static int
set_insert_key(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *entry;
    // set_lookkey 这个函数便是插入的核心的逻辑的实现对应的实现函数在下方
    entry = set_lookkey(so, key, hash);
    if (entry == NULL)
        return -1;
    if (entry->key == NULL) {
        /* UNUSED */
        entry->key = key;
        entry->hash = hash;
        so->fill++;
        so->used++;
    } else if (entry->key == dummy) {
        /* DUMMY */
        entry->key = key;
        entry->hash = hash;
        so->used++;
    } else {
        /* ACTIVE */
        Py_DECREF(key);
    }
    return 0;
}
// 下面的代码就是在执行我们在前面所谈到的逻辑,直到找到相同的 key 或者空位置才退出 while 循环
static setentry *
set_lookkey(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *table = so->table;
    setentry *freeslot = NULL;
    setentry *entry;
    size_t perturb = hash;
    size_t mask = so->mask;
    size_t i = (size_t)hash & mask; /* Unsigned for defined overflow behavior */
    size_t j;
    int cmp;
    entry = &table[i];
    if (entry->key == NULL)
        return entry;
    while (1) {
        if (entry->hash == hash) {
            PyObject *startkey = entry->key;
            /* startkey cannot be a dummy because the dummy hash field is -1 */
            assert(startkey != dummy);
            if (startkey == key)
                return entry;
            if (PyUnicode_CheckExact(startkey)
                && PyUnicode_CheckExact(key)
                && unicode_eq(startkey, key))
                return entry;
            Py_INCREF(startkey);
            // returning -1 for error, 0 for false, 1 for true
            cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
            Py_DECREF(startkey);
            if (cmp < 0)                                          /* unlikely */
                return NULL;
            if (table != so->table || entry->key != startkey)     /* unlikely */
                return set_lookkey(so, key, hash);
            if (cmp > 0)                                          /* likely */
                return entry;
            mask = so->mask;                 /* help avoid a register spill */
        }
        if (entry->hash == -1 && freeslot == NULL)
            freeslot = entry;
        if (i + LINEAR_PROBES <= mask) {
            for (j = 0 ; j < LINEAR_PROBES ; j++) {
                entry++;
                if (entry->key == NULL)
                    goto found_null;
                if (entry->hash == hash) {
                    PyObject *startkey = entry->key;
                    assert(startkey != dummy);
                    if (startkey == key)
                        return entry;
                    if (PyUnicode_CheckExact(startkey)
                        && PyUnicode_CheckExact(key)
                        && unicode_eq(startkey, key))
                        return entry;
                    Py_INCREF(startkey);
                    // returning -1 for error, 0 for false, 1 for true
                    cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
                    Py_DECREF(startkey);
                    if (cmp < 0)
                        return NULL;
                    if (table != so->table || entry->key != startkey)
                        return set_lookkey(so, key, hash);
                    if (cmp > 0)
                        return entry;
                    mask = so->mask;
                }
                if (entry->hash == -1 && freeslot == NULL)
                    freeslot = entry;
            }
        }
        perturb >>= PERTURB_SHIFT; // #define PERTURB_SHIFT 5
        i = (i * 5 + 1 + perturb) & mask;
        entry = &table[i];
        if (entry->key == NULL)
            goto found_null;
    }
  found_null:
    return freeslot == NULL ? entry : freeslot;
}

哈希表数组扩容

在 cpython 当中对于给哈希表数组扩容的操作,很多情况下都是用下面这行代码,从下面的代码来看对应扩容后数组的大小并不简单,当你的哈希表当中的元素个数大于 50000 时,新数组的大小是原数组的两倍,而如果你哈希表当中的元素个数小于等于 50000,那么久扩大为原来长度的四倍,这个主要是怕后面如果继续扩大四倍的话,可能会浪费很多内存空间。

set_table_resize(so, so-&gt;used&gt;50000 ? so-&gt;used*2 : so-&gt;used*4);

首先需要了解一下扩容机制,当哈希表需要扩容的时候,主要有以下两个步骤:

  • 创建新的数组,用于存储哈希表的键。
  • 遍历原来的哈希表,将原来哈希表当中的数据加入到新的申请的数组当中。

这里需要注意的是因为数组的长度发生了变化,但是 key 的哈希值却没有发生变化,因此在新的数组当中数据对应的下标位置也会发生变化,因此需重新将所有的对象重新进行一次插入操作,下面的整个操作相对来说比较简单,这里不再进行说明了。

static int
set_table_resize(PySetObject *so, Py_ssize_t minused)
{
    Py_ssize_t newsize;
    setentry *oldtable, *newtable, *entry;
    Py_ssize_t oldfill = so->fill;
    Py_ssize_t oldused = so->used;
    int is_oldtable_malloced;
    setentry small_copy[PySet_MINSIZE];
    assert(minused >= 0);
    /* Find the smallest table size > minused. */
    /* XXX speed-up with intrinsics */
    for (newsize = PySet_MINSIZE;
         newsize <= minused && newsize > 0;
         newsize <<= 1)
        ;
    if (newsize <= 0) {
        PyErr_NoMemory();
        return -1;
    }
    /* Get space for a new table. */
    oldtable = so->table;
    assert(oldtable != NULL);
    is_oldtable_malloced = oldtable != so->smalltable;
    if (newsize == PySet_MINSIZE) {
        /* A large table is shrinking, or we can't get any smaller. */
        newtable = so->smalltable;
        if (newtable == oldtable) {
            if (so->fill == so->used) {
                /* No dummies, so no point doing anything. */
                return 0;
            }
            /* We're not going to resize it, but rebuild the
               table anyway to purge old dummy entries.
               Subtle:  This is *necessary* if fill==size,
               as set_lookkey needs at least one virgin slot to
               terminate failing searches.  If fill < size, it's
               merely desirable, as dummies slow searches. */
            assert(so->fill > so->used);
            memcpy(small_copy, oldtable, sizeof(small_copy));
            oldtable = small_copy;
        }
    }
    else {
        newtable = PyMem_NEW(setentry, newsize);
        if (newtable == NULL) {
            PyErr_NoMemory();
            return -1;
        }
    }
    /* Make the set empty, using the new table. */
    assert(newtable != oldtable);
    memset(newtable, 0, sizeof(setentry) * newsize);
    so->fill = 0;
    so->used = 0;
    so->mask = newsize - 1;
    so->table = newtable;
    /* Copy the data over; this is refcount-neutral for active entries;
       dummy entries aren't copied over, of course */
    if (oldfill == oldused) {
        for (entry = oldtable; oldused > 0; entry++) {
            if (entry->key != NULL) {
                oldused--;
                set_insert_clean(so, entry->key, entry->hash);
            }
        }
    } else {
        for (entry = oldtable; oldused > 0; entry++) {
            if (entry->key != NULL && entry->key != dummy) {
                oldused--;
                set_insert_clean(so, entry->key, entry->hash);
            }
        }
    }
    if (is_oldtable_malloced)
        PyMem_DEL(oldtable);
    return 0;
}
static void
set_insert_clean(PySetObject *so, PyObject *key, Py_hash_t hash)
{
    setentry *table = so->table;
    setentry *entry;
    size_t perturb = hash;
    size_t mask = (size_t)so->mask;
    size_t i = (size_t)hash & mask;
    size_t j;
    // #define LINEAR_PROBES 9
    while (1) {
        entry = &table[i];
        if (entry->key == NULL)
            goto found_null;
        if (i + LINEAR_PROBES <= mask) {
            for (j = 0; j < LINEAR_PROBES; j++) {
                entry++;
                if (entry->key == NULL)
                    goto found_null;
            }
        }
        perturb >>= PERTURB_SHIFT;
        i = (i * 5 + 1 + perturb) & mask;
    }
  found_null:
    entry->key = key;
    entry->hash = hash;
    so->fill++;
    so->used++;
}

从集合当中删除元素 pop

从集合当中删除元素的代码如下所示:

static PyObject *
set_pop(PySetObject *so)
{
    /* Make sure the search finger is in bounds */
    Py_ssize_t i = so->finger & so->mask;
    setentry *entry;
    PyObject *key;
    assert (PyAnySet_Check(so));
    if (so->used == 0) {
        PyErr_SetString(PyExc_KeyError, "pop from an empty set");
        return NULL;
    }
    while ((entry = &so->table[i])->key == NULL || entry->key==dummy) {
        i++;
        if (i > so->mask)
            i = 0;
    }
    key = entry->key;
    entry->key = dummy;
    entry->hash = -1;
    so->used--;
    so->finger = i + 1;         /* next place to start */
    return key;
}

上面的代码相对来说也比较清晰,从 finger 开始寻找存在的元素,并且删除他。我们在前面提到过,当一个元素被删除之后他会被赋值成 dummy 而且哈希值为 -1 。

总结

在本篇文章当中主要给大家简要介绍了一下在 cpython 当中的集合对象是如何实现的,主要是介绍了一些核心的数据结构和 cpython 当中具体的哈希表的实现原理,在 cpython 内部是使用线性探测法和开放地址法两种方法去解决哈希冲突的,同时 cpython 哈希表的扩容方式比价有意思,在哈希表当中的元素个数小于 50000 时,扩容的时候,扩容大小为原来的四倍,当大于 50000 时,扩容的大小为原来的两倍,这个主要是因为怕后面如果扩容太大没有使用非常浪费内存空间。

本篇文章是深入理解 python 虚拟机系列文章之一,文章地址:github.com/Chang-LeHun…

更多精彩内容合集可访问项目:github.com/Chang-LeHun…

以上就是Python 虚拟机集合set实现原理及源码解析的详细内容,更多关于Python 虚拟机set集合的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python的集合类型之set和frozenset详解

    目录 集合类型—set,frozenset set和frozenset的实例提供以下操作: len(s) xins xnotins isdisjoint(other) issubset(other) issuperset(other) union(*others) intersection(*others) difference(*others) symmetric_difference(other) copy() 可用于set而不能用于不可变的frozenset实例的操作: update(*o

  • Python集合之set和frozenset的使用详解

    目录 简介 构造 基本使用 交集.并集.差集.对称差集 无交集.子集.超集 运算符 可用于 set 的操作 简介 集合对象 set 是由具有唯一性的可哈希对象组成的无序多项集,如 list 不能哈希因此,不能作为 set 的一项. set 的常见用途包括成员检测.从序列中去除重复项以及数学中的集合类计算,如交集.并集.差集与对称差集等. set 不记录元素位置或插入顺序. 相应地,set 不支持索引.切片或其他序列操作. 目前有两种内置集合类型,set 和 frozenset: set 是可变的

  • Python集合set()使用的方法详解

    目录 1.集合的特点 2.set的建立 1.用set()函数创建set集合 2.add() 3.用{}创建set集合.空set集合用set()函数表示,不可a={}. 4.set集合的转化 3.常见使用注意事项 4.set的常用方法 4.1 set集合的增删改查操作 4.2 其它用法 5.列表,元组,字典,集合 5.1 它们之间的类型转换 5.2 集合和列表方法上的区别 总结 在python3中按数据类型的可变与不可变大致分为如下几种类型: 不可变数据(3个):Number(数字).String

  • Python 数据类型--集合set

    目录 一.定义 二.操作 三.运算 一.定义 集合中的元素是无序的.唯一的.不可变的类型.集合是一个特殊的列表,可以对数据去重. lists = [1,3,5,7,3,4,6,2,7,9] print(set(lists)) 使用大括号{}或set()函数吧数据集合在一起. set()中的参数可以是元组.字符串.列表,还可以是一个集合.这个参数只要是一个序列即可. 创建一个空集合必须用set(),不能使用大括号.{}是用来定义空字典的. 二.操作 add(),把要传入的元素作为一个整体添加到集合

  • Python集合set的交集和并集操作方法小

    目录 一.交集操作 1.使用intersection()求交集 2.使用位运算&符求交集 3.intersection_update()方法 4.使用intersection()方法 二.并集操作 1.使用union()求并集 2.使用逻辑或|求并集 3.使用update()求并集,只能作用域可变集合 前言: 集合这种数据类型和我们数学中所学的集合很是相似,数学中堆积和的操作也有交集,并集和差集操作,python集合也是一样. 一.交集操作 1.使用intersection()求交集 可变集合和

  • Python虚拟机栈帧对象及获取源码学习

    目录 Python虚拟机 1. 栈帧对象 1.1 PyFrameObject 1.2 栈帧对象链 1.3 栈帧获取 2. 字节码执行 Python虚拟机 注:本篇是根据教程学习记录的笔记,部分内容与教程是相同的,因为转载需要填链接,但是没有,所以填的原创,如果侵权会直接删除.此外,本篇内容大部分都咨询了ChatGPT,为笔者解决了很多问题. 问题: 在Python 程序执行过程与字节码中,我们研究了Python程序的编译过程:通过Python解释器中的编译器对 Python 源码进行编译,最终获

  • SpringBoot 自动配置原理及源码解析

    初始化一个Springboot项目,在主启动类会有这么一个注解:@SpringBootApplication,自动装配的秘密全在主启动类这个注解里面了 点进去一层会发现有三个子注解组成,分别是 @SpringBootConfiguration.@ComponentScan和@EnableAutoConfiguration 接下来分别解释这三个注解在整个自动装配过程中的作用 1.@SpringBootConfiguration 点进去发现它是@Configure,代表当前是一个配置类,意思就是当前

  • 深入理解Python虚拟机中复数(complex)的实现原理及源码剖析

    目录 复数数据结构 复数的操作 复数加法 复数取反 Repr 函数 总结 复数数据结构 在 cpython 当中对于复数的数据结构实现如下所示: typedef struct { double real; double imag; } Py_complex; #define PyObject_HEAD PyObject ob_base; typedef struct { PyObject_HEAD Py_complex cval; } PyComplexObject; typedef struc

  • 深入理解Python虚拟机中整型(int)的实现原理及源码剖析

    目录 数据结构 深入分析 PyLongObject 字段的语意 小整数池 整数的加法实现 总结 数据结构 在 cpython 内部的 int 类型的实现数据结构如下所示: typedef struct _longobject PyLongObject; struct _longobject { PyObject_VAR_HEAD digit ob_digit[1]; }; #define PyObject_VAR_HEAD PyVarObject ob_base; typedef struct

  • java并发容器CopyOnWriteArrayList实现原理及源码分析

    CopyOnWriteArrayList是Java并发包中提供的一个并发容器,它是个线程安全且读操作无锁的ArrayList,写操作则通过创建底层数组的新副本来实现,是一种读写分离的并发策略,我们也可以称这种容器为"写时复制器",Java并发包中类似的容器还有CopyOnWriteSet.本文会对CopyOnWriteArrayList的实现原理及源码进行分析. 实现原理 我们都知道,集合框架中的ArrayList是非线程安全的,Vector虽是线程安全的,但由于简单粗暴的锁同步机制,

  • python抢购软件/插件/脚本附完整源码

    距上篇关于淘宝抢购源码的文章已经过去五个月了,五个月来我通过不停的学习,掌握了更深层的抢购技术及原理,而上篇文章中我仅分享了关于加入购物车的商品的抢购源码,且有部分不足. 博主不提供任何服务器端程序,也不提供任何收费抢购软件.该文章仅作为学习selenium框架及GUI开发的一个示例代码.该思路可运用到其他任何网站,京东,天猫,淘宝均可使用,且不属于外挂或者软件之类,只属于一个自动化点击工具,如有侵犯到任何公司的合法权益,请私信联系,会第一时间将相关代码给予删除. 本篇文章我将附上完整源码,及其

  • Java实现多人聊天室的原理与源码

    多人聊天室原理图 源码 工具类: 该类用于关闭各种流. public class CloseUtil { public static void CloseAll(Closeable... closeable){ for(Closeable c:closeable){ if (c != null) { try { c.close(); } catch (IOException e) { e.printStackTrace(); } } } } } 服务器: 服务器端创建一个serverSocket

  • 深度源码解析Java 线程池的实现原理

    java 系统的运行归根到底是程序的运行,程序的运行归根到底是代码的执行,代码的执行归根到底是虚拟机的执行,虚拟机的执行其实就是操作系统的线程在执行,并且会占用一定的系统资源,如CPU.内存.磁盘.网络等等.所以,如何高效的使用这些资源就是程序员在平时写代码时候的一个努力的方向.本文要说的线程池就是一种对 CPU 利用的优化手段. 线程池,百度百科是这么解释的: 线程池是一种多线程处理形式,处理过程中将任务添加到队列,然后在创建线程后自动启动这些任务.线程池线程都是后台线程.每个线程都使用默认的

  • 深入解析spring AOP原理及源码

    目录 @EnableAspectJAutoProxy 找切面 代理对象的创建 代理方法的执行 ExposeInvocationInterceptor#invoke 环绕通知的执行 前置通知的执行 后置通知的执行 返回后通知的执行 异常通知的执行 @EnableAspectJAutoProxy @EnableAspectJAutoProxy注解用于开启AOP功能,那么这个注解底层到底做了什么呢? 查看@EnableAspectJAutoProxy的源码,发现它使用@Import注解向Spring容

  • python目标检测SSD算法预测部分源码详解

    目录 学习前言 什么是SSD算法 ssd_vgg_300主体的源码 学习前言 ……学习了很多有关目标检测的概念呀,咕噜咕噜,可是要怎么才能进行预测呢,我看了好久的SSD源码,将其中的预测部分提取了出来,训练部分我还没看懂 什么是SSD算法 SSD是一种非常优秀的one-stage方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归,整个过程只需要一步,所以其优势是速度

随机推荐