C语言手写集合List的示例代码

目录
  • 前沿
  • 定义结构
  • 创建List
  • 扩容
  • 创建数据节点
  • 给集合添加值
  • 删除集合内指定的值
  • 删除集合内指定下标的值
  • 打印集合
  • 迭代器
  • 查询指定元素的下标(第一个)
  • 末尾查询指定元素下标(第一个)
  • 判断数组是否有序
  • 二分查询
  • 修改集合指定元素的值
  • 快速排序
  • 集合去重
  • 集合复制
  • 集合合并
  • 集合差集
  • 集合补集
  • 集合并集
  • 集合交集
  • 销毁集合

前沿

数组长度是固定的,那么在很多时候我们并不知道到底有多少数据需要存储,这时候我么就需要一个可变长度的数组来进行存储,在C语言中需要我们自己进行定义,我们称为集合

定义结构

typedef struct charlist {
    char **str;
    int len;
    int capacity;
}CharList;

typedef int boolean;//定义一个布尔类型
#define TRUE 1
#define FALSE 0

创建List

//创建一个空节点, 可以指定容量默认为10
CharList *createCharList(int size) {
    if (size < 10) {
        size = 10;
    }
    //初始化结构体和一个2级指针
    CharList *charList = (CharList *) calloc(1, sizeof(CharList));
    charList->str= (char **) calloc(size, sizeof(char *));
    charList->len = 0;
    charList->capacity = size;
    return charList;
}

扩容

//扩容
static void  dilatation(CharList **pCharList) {
    CharList *charList = *pCharList;
    int capacity1 =charList->capacity;//获取当前节点的容积
    int size = capacity1 + (capacity1 * 0.75);//容积增加
    charList->capacity= size;//更新容积
    char **p1 = (char **) realloc(charList->str,size*sizeof(char *));
    charList->str=p1;
}

创建数据节点

static char *createData(char *data){
    //插入数据
    char *pData = (char *) calloc(strlen(data) + 1,sizeof(char) ); //为啥要+1因为字符串结尾需要有一个空字符
    strcpy(pData,data);
    return pData;
}

给集合添加值

//添加一个值 ,容量不够会自动在原有基础上进行扩容*0.75
void addCharList(CharList **pCharList, char *value) {
    CharList *charList = *pCharList;
    int len1 = charList->len;//获取当前节点的长度
    int capacity1 =charList->capacity;//获取数组的容量
    if (len1 == capacity1) {
        dilatation(pCharList);//扩容
    }
    charList->str[len1] = createData(value);//插入数据
    charList->len++;
}

删除集合内指定的值

void deleteCharList(CharList **pCharList, char *value) {
    CharList *charList = *pCharList;
    int len1 = charList->len;//获取当前节点的长度
    for (int i = 0; i < len1; ++i) {
        if (strcmp(charList->str[i],value)==0) {//找到了
            free(charList->str[i]);//释放内存
            for (int j = i; j < len1 - 1; ++j) {//后面的节点向前移动
                charList->str[j] = charList->str[j + 1];
            }
            charList->len--;
            break;
        }
    }

}

删除集合内指定下标的值

//删除集合内指定下标的值
void deleteCharListByIndex(CharList **pCharList, int index) {
    CharList *charList = *pCharList;
    int len1 = charList->len;//获取当前节点的长度
    if (index < 0 || index >= len1) {
        return;
    }
    free(charList->str[index]);//释放内存
    for (int j = index; j < len1 - 1; ++j) {//后面的节点向前移动
        charList->str[j] = charList->str[j + 1];
    }
    charList->len--;
}

打印集合

//打印所有节点
void printCharList(CharList *pCharList) {
    int len1 = pCharList->len;
    for (int i = 0; i < len1; i++) {
        printf("%s\n", pCharList->str[i]);
    }
}

迭代器

先这样简单的使用,如果有需要可以自己定义一套迭代机制

void charListIterator(CharList *pCharList,void (*func)(char *)) {
    int len1 = pCharList->len;
    for (int i = 0; i < len1; i++) {
        func(pCharList->str[i]);
    }
}

查询指定元素的下标(第一个)

//查询指定元素的下标 ,没有找到返回-1
int charListIndexOf(CharList *pCharList, char *value) {
    int len1 =  pCharList->len;
    for (int i = 0; i < len1; i++) {
        if (strcmp(pCharList->str[i],value)==0) {
            return i;
        }
    }
    return -1;
}

末尾查询指定元素下标(第一个)

int charListLastIndexOf(CharList *pCharList, char *value) {
    int len1 =  pCharList->len;
    for (int i = len1 - 1; i >= 0; i--) {
        if (strcmp(pCharList->str[i],value)==0) {
            return i;
        }
    }
    return -1;
}

判断数组是否有序

/**
 * 判断数组是否有序
 * @param pCharList
 * @param type  TRUE: 按照ASCII码排序   FALSE: 安装字符长度排序
 * @return
 */
boolean charListIsSorted(CharList *pCharList,boolean type) {
    int len1 = pCharList->len;
    boolean result; //返回结果
    if(type){//按照ASCII码排序方式进行判断
        //从小到大
        for (int i = 0; i < len1 - 1; i++) {
            if (strcmp(pCharList->str[i],pCharList->str[i + 1])>0) {
                result=FALSE;
                break;
            }
        }
        //从大到小
        for (int i = 0; i < len1 - 1; i++) {
            if (strcmp(pCharList->str[i],pCharList->str[i + 1])<0) {
                result=FALSE;
                break;
            }
        }
    }else{
        //从小到大
        for (int i = 0; i < len1 - 1; i++) {
            if (strlen(pCharList->str[i])>strlen(pCharList->str[i + 1])) {
                result=FALSE;
                break;
            }
        }
        //从大到小
        for (int i = 0; i < len1 - 1; i++) {
            if (strlen(pCharList->str[i])<strlen(pCharList->str[i + 1])) {
                result=FALSE;
                break;
            }
        }
    }

​​​​​​​    return result;
}

二分查询

/**
 * 二分查询,没有找到返回-1  以ASCII码查询
 * @param pCharList
 * @param value
 * @return  找到返回下标,没有找到返回-1
 */
int charListBinarySearch(CharList *pCharList, char *value) {
    if(!charListIsSorted(pCharList,TRUE)){ //判断是否是排序的数组,如果不是那么我们给排序
        //二分查询需要是有序的数组,所以需要先排序 以ASCII码进行排序
        charListSort(pCharList,1);
    }
    int len1 =  pCharList->len;
    int low = 0;
    int high = len1 - 1;
    while (low <= high) {
        int mid = (low + high) / 2;//中间下标
        if (strcmp(pCharList->str[mid],value)==0) {//找到了
            return mid;
        }
        if (strcmp(pCharList->str[mid],value)>0) {//中间值比查找值大
            high = mid - 1;//向左找
        } else {//比中间值比差值值小
            low = mid + 1;//向右找
        }
    }
    return -1;
}

修改集合指定元素的值

//修改指定元素的值
void charListSet(CharList *pCharList, char *value, int index) {
    int len1 =  pCharList->len;
    if (index < 0 || index >= len1) {
        return;
    }
    free(pCharList->str[index]);
    pCharList->str[index] = createData(value);

}

快速排序

//快速排序 (根据ASCII码排序,从小到大)
static void quickSort(char **str, int left, int right) {
    if (left >= right) {
        return;
    }
    char *p = str[left];
    int i = left;
    int j = right;
    while (i < j) {
        while (i < j && strcmp(str[j],p)>=0) {
            j--;
        }
        str[i] = str[j];
        while (i < j && strcmp(str[i],p)<=0) {
            i++;
        }
        str[j] = str[i];
    }
    str[i] = p;
    quickSort(str, left, i - 1);
    quickSort(str, i + 1, right);
}

​​​​​​​//快速排序(根据长度排序,从小到大)
static void quickSortByLen(char **str, int left, int right) {
    if (left >= right) {
        return;
    }
    char *p = str[left];
    int i = left;
    int j = right;
    while (i < j) {
        while (i < j && strlen(str[j])>=strlen(p)) {
            j--;
        }
        str[i] = str[j];
        while (i < j && strlen(str[i])<=strlen(p)) {
            i++;
        }
        str[j] = str[i];
    }
    str[i] = p;
    quickSortByLen(str, left, i - 1);
    quickSortByLen(str, i + 1, right);
}
/**
 * 根据ASCII码排序,从小到大,或者根据长度排序,从小到大
 * @param pCharList
 * @param type   TRUE就是ASCII码排序, FALSE就是根据长度排序
 */
void charListSort(CharList *pCharList, boolean type) {
    if(type){
        quickSort(pCharList->str, 0, pCharList->len-1);
    }else{
        quickSortByLen(pCharList->str, 0, pCharList->len-1);
    }
}

集合去重

//去重
void charListDistinct(CharList *pCharList) {
    int len1 = pCharList->len;
    for (int i = 0; i < len1; i++) {
        for (int j = i + 1; j < len1; j++) {
            if (strcmp(pCharList->str[i],pCharList->str[j])==0) {
                free(pCharList->str[j]);//释放内存
                for (int k = j; k < len1 - 1; ++k) {//将后面的内容向前移动
                    pCharList->str[k] = pCharList->str[k + 1];
                }
                //去除结尾的元素
                pCharList->str[len1 - 1]=NULL;
                len1--;
                pCharList->len--;//长度减1
                j--;//重新比较
            }
        }
    }
}

集合复制

//集合复制,返回新集合
CharList *charListCopy(CharList *pCharList) {
    int len1 = pCharList->len;
    CharList *pNewCharList = createCharList(len1);
    for (int i = 0; i < len1; i++) {
        char *p = createData(pCharList->str[i]);
        addCharList(&pNewCharList, p);
    }
    return pNewCharList;
}

集合合并

//集合合并,返回新集合
CharList *charListMerge(CharList *pCharList1, CharList *pCharList2) {
    int len1 = pCharList1->len;
    int len2 = pCharList2->len;
    CharList *pNewCharList = createCharList(len1 + len2);
    for (int i = 0; i < len1; i++) {
        char *p = createData(pCharList1->str[i]);
        addCharList(&pNewCharList, p);
    }
    for (int i = 0; i < len2; i++) {
        char *p = createData(pCharList2->str[i]);
        addCharList(&pNewCharList, p);
    }
    return pNewCharList;
}

集合差集

记A,B是两个集合 ,A集合中不存在B集合的元素,那么A集合就是B集合的差集

//集合差集,返回新集合
CharList *charListDifference(CharList *pCharList1, CharList *pCharList2) {
    int len1 = pCharList1->len;
    int len2 = pCharList2->len;
    CharList *pNewCharList = charListCopy(pCharList1);
    for (int i = 0; i < len2; i++) {
        int index = charListIndexOf(pNewCharList, pCharList2->str[i]);
        if (index != -1) {
            free(pNewCharList->str[index]);//释放内存
            for (int j = index; j < len1 - 1; ++j) {//将后面的内容向前移动
                pNewCharList->str[j] = pNewCharList->str[j + 1];
            }
            //去除结尾的元素
            pNewCharList->str[len1 - 1]=NULL;
            len1--;
            pNewCharList->len--;//长度减1
            i--;//重新比较
        }
    }
    return pNewCharList;
}

集合补集

对于两个给定集合A、B, 如果A集合中不存在B集合元素,那么B集合就是A集合的补集,当然反过来也可以说A集合是B集合的补集

//集合补集,返回新集合
CharList *charListComplement(CharList *pCharList1, CharList *pCharList2) {
    CharList *pCharlist1 = charListDifference(pCharList1, pCharList2);
    CharList *pCharlist2 = charListDifference(pCharList2, pCharList1);
    CharList *pCharlist = charListMerge(pCharlist1, pCharlist2);
    return pCharlist;
}

集合并集

对于两个给定集合A、B,由两个集合所有元素构成的集合,叫做A和B的并集。(需要去重只保留一个)

//集合并集,返回新集合
CharList *charListUnion(CharList *pCharList1, CharList *pCharList2) {
    CharList *pCharlist1 = charListDifference(pCharList1, pCharList2);
    CharList *pCharlist2 = charListMerge(pCharlist1, pCharList2);
    return pCharlist2;
}

集合交集

对于两个给定集合A、B,属于A又属于B的所有元素构成的集合,叫做A和B的交集。

//集合交集,返回新集合
CharList *charListIntersection(CharList *pCharList1, CharList *pCharList2) {
    int len2 = pCharList2->len;
    CharList *pNewCharList = createCharList(len2/2);
    for (int i = 0; i < len2; ++i){
        int of = charListIndexOf(pCharList1, pCharList2->str[i]);
        if(of!=-1){
            addCharList(&pNewCharList, pCharList2->str[i]);
        }
    }
    return pNewCharList;
}

销毁集合

// 释放内存
void charListClean(CharList *pCharList) {
    //清理数组内元素
    for (int i = 0; i < pCharList->len; ++i) {
        free(pCharList->str[i]);
    }
    //清除数组
    free(pCharList);
}

到此这篇关于C语言手写集合List的示例代码的文章就介绍到这了,更多相关C语言集合内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++中list的使用与模拟实现

    目录 一.list的介绍以及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers 1.2.6 list的迭代器失效 二.list的模拟实现 2.1 模拟实现list 总结 一.list的介绍以及使用 1.1 list的介绍 1.list是可以在常数范围内在任意位置进行插入和删除的序列式容器,

  • C语言实现通用数据结构之通用集合(HashSet)

    这是在通用链表的基础上实现的集合,关于链表的实现参见:C语言实现通用数据结构之通用链表 注意集合中只存储了指针,没有储存实际的数据. 对于新的数据类型来说,需要自定义HashCode函数和equal函数. 下面还给出了几个常见的hashCode函数和equal函数. (1)HashCode函数 头文件 /************************* *** File myHashCode.h **************************/ #ifndef MYHASHCODE_H_

  • C++简单集合类的实现方法

    来自于C++程序设计的一个题目.实现一个集合类,要求实现以下4个操作.  1.向集合中添加元素,如果集合中已存在元素则不添加  2.从集合中移除元素,移除之前需要先判断集合中元素是否存在  3.重载+运算符,用以实现集合的求并集运算  4.重载*运算符,用以实现集合的求交集运算 1.类的整体设计 该问题需要模拟实现集合类,我们可以使用数组来模拟集合,于是使用int items[100]用来存放集合中的数据.为了实现数组的遍历,这就需要一个整数用来表示数组中元素的个数,于是使用int number

  • C++深入探究list的模拟实现

    目录 迭代器 正向迭代器类 反向迭代器类 push_back尾插函数 push_front头插函数 insert插入函数 erase删除函数 pop_front函数 pop_back函数 构造函数 析构函数 list拷贝构造函数 list赋值重载函数 其他函数 示意图: 迭代器 正向迭代器类 我们之前所理解的是:迭代器理解为像指针一样的东西,但是在list中有些不同 // 迭代器逻辑 while(it!=l.end()) { *it; // 解引用取数据 ++it;// 自加到达下一个位置 }

  • C语言手写集合List的示例代码

    目录 前沿 定义结构 创建List 扩容 创建数据节点 给集合添加值 删除集合内指定的值 删除集合内指定下标的值 打印集合 迭代器 查询指定元素的下标(第一个) 末尾查询指定元素下标(第一个) 判断数组是否有序 二分查询 修改集合指定元素的值 快速排序 集合去重 集合复制 集合合并 集合差集 集合补集 集合并集 集合交集 销毁集合 前沿 数组长度是固定的,那么在很多时候我们并不知道到底有多少数据需要存储,这时候我么就需要一个可变长度的数组来进行存储,在C语言中需要我们自己进行定义,我们称为集合

  • C语言实现手写红黑树的示例代码

    目录 前沿 红黑树代码 测试 前沿 写C的红黑树前建议先看我博客这篇文章Java-红黑树 主要看原理 红黑树代码 #ifndef STUDY_RBTREE_H #define STUDY_RBTREE_H #include "charkvlinked.h" typedef int boolean;//定义一个布尔类型 #define TRUE 1 #define FALSE 0 enum COL{RED=0,BLACK=1}; typedef struct rBNode { char

  • 超详细PyTorch实现手写数字识别器的示例代码

    前言 深度学习中有很多玩具数据,mnist就是其中一个,一个人能否入门深度学习往往就是以能否玩转mnist数据来判断的,在前面很多基础介绍后我们就可以来实现一个简单的手写数字识别的网络了 数据的处理 我们使用pytorch自带的包进行数据的预处理 import torch import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt

  • PyTorch实现手写数字识别的示例代码

    目录 加载手写数字的数据 数据加载器(分批加载) 建立模型 模型训练 测试集抽取数据,查看预测结果 计算模型精度 自己手写数字进行预测 加载手写数字的数据 组成训练集和测试集,这里已经下载好了,所以download为False import torchvision # 是否支持gpu运算 # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # print(device) # print(torch.cud

  • 利用Java手写阻塞队列的示例代码

    目录 前言 需求分析 阻塞队列实现原理 线程阻塞和唤醒 数组循环使用 代码实现 成员变量定义 构造函数 put函数 offer函数 add函数 take函数 重写toString函数 完整代码 总结 前言 在我们平时编程的时候一个很重要的工具就是容器,在本篇文章当中主要给大家介绍阻塞队列的原理,并且在了解原理之后自己动手实现一个低配版的阻塞队列. 需求分析 在前面的两篇文章ArrayDeque(JDK双端队列)源码深度剖析和深入剖析(JDK)ArrayQueue源码当中我们仔细介绍了队列的原理,

  • 手写Java LockSupport的示例代码

    目录 前言 LockSupport实现原理 自己动手实现自己的LockSupport 实现原理 自己实现LockSupport协议规定 工具 具体实现 完整代码 JVM实现一瞥 总结 前言 在JDK当中给我们提供的各种并发工具当中,比如ReentrantLock等等工具的内部实现,经常会使用到一个工具,这个工具就是LockSupport.LockSupport给我们提供了一个非常强大的功能,它是线程阻塞最基本的元语,他可以将一个线程阻塞也可以将一个线程唤醒,因此经常在并发的场景下进行使用. Lo

  • Java实现手写自旋锁的示例代码

    目录 前言 自旋锁 原子性 自己动手写自旋锁 自己动手写可重入自旋锁 总结 前言 我们在写并发程序的时候,一个非常常见的需求就是保证在某一个时刻只有一个线程执行某段代码,像这种代码叫做临界区,而通常保证一个时刻只有一个线程执行临界区的代码的方法就是锁.在本篇文章当中我们将会仔细分析和学习自旋锁,所谓自旋锁就是通过while循环实现的,让拿到锁的线程进入临界区执行代码,让没有拿到锁的线程一直进行while死循环,这其实就是线程自己“旋”在while循环了,因而这种锁就叫做自旋锁. 自旋锁 原子性

  • Java实现手写线程池的示例代码

    目录 前言 线程池给我们提供的功能 工具介绍 Worker设计 线程池设计 总结 前言 在我们的日常的编程当中,并发是始终离不开的主题,而在并发多线程当中,线程池又是一个不可规避的问题.多线程可以提高我们并发程序的效率,可以让我们不去频繁的申请和释放线程,这是一个很大的花销,而在线程池当中就不需要去频繁的申请线程,他的主要原理是申请完线程之后并不中断,而是不断的去队列当中领取任务,然后执行,反复这样的操作.在本篇文章当中我们主要是介绍线程池的原理,因此我们会自己写一个非常非常简单的线程池,主要帮

  • 手写vite插件教程示例

    目录 前言 1. 什么是 vite 插件 2. 为什么要写 vite 插件 创建  vite 插件通用模板 1. 初始化 2. 配置 eslint 和 prettier(可选) 3. 新增 src/index.ts 入口 4. 创建 examples 目录 5. 配置 examples/vite-vue3 项目 6. 安装 tsup 配置运行命令 7. 开发环境运行 8. 发布 vite 的插件钩子 hooks 们 1. vite 独有的钩子 2. vite 与 rollup 的通用钩子之构建阶

  • React手写一个手风琴组件示例

    目录 知识点 结构分析 AccordionItem子组件 Accordion容器组件 知识点 emotion语法 react语法 css语法 typescript类型语法 结构分析 根据上图,我们来分析一下,一个手风琴组件应该包含一个手风琴容器组件和多个手风琴子元素组件.因此,假设我们实现好了所有的逻辑,并写出使用demo,那么代码应该如下: <Accordion defaultIndex="1" onItemClick={console.log}> <Accordi

随机推荐