浅谈.NET中加密和解密的实现方法分享

.NET将原来独立的API和SDK合并到一个框架中,这对于程序开发人员非常有利。它将CryptoAPI改编进.NET的System.Security.Cryptography名字空间,使密码服务摆脱了SDK平台的神秘性,变成了简单的.NET名字空间的使用。由于随着整个框架组件一起共享,密码服务更容易实现了,现在仅仅需要学习 System.Security.Cryptography名字空间的功能和用于解决特定方案的类。
  加密和解密的算法

  System.Security.Cryptography名字空间包含了实现安全方案的类,例如加密和解密数据、管理密钥、验证数据的完整性并确保数据没有被篡改等等。本文重点讨论加密和解密。

  加密和解密的算法分为对称(symmetric)算法和不对称(asymmetric)算法。对称算法在加密和解密数据时使用相同的密钥和初始化矢量,典型的有DES、 TripleDES和Rijndael算法,它适用于不需要传递密钥的情况,主要用于本地文档或数据的加密。不对称算法有两个不同的密钥,分别是公共密钥和私有密钥,公共密钥在网络中传递,用于加密数据,而私有密钥用于解密数据。不对称算法主要有RSA、DSA等,主要用于网络数据的加密。

  加密和解密本地文档

  下面的例子是加密和解密本地文本,使用的是Rijndael对称算法。

  对称算法在数据流通过时对它进行加密。因此首先需要建立一个正常的流(例如I/O流)。文章使用FileStream类将文本文件读入字节数组,也使用该类作为输出机制。

  接下来定义相应的对象变量。在定义SymmetricAlgorithm抽象类的对象变量时我们可以指定任何一种对称加密算法提供程序。代码使用的是 Rijndael算法,但是很容易改为DES或者TripleDES算法。.NET使用强大的随机密钥设置了提供程序的实例,选择自己的密钥是比较危险的,接受计算机产生的密钥是一个更好的选择,文中的代码使用的是计算机产生的密钥。

  下一步,算法实例提供了一个对象来执行实际数据传输。每种算法都有CreateEncryptor和CreateDecryptor两个方法,它们返回实现ICryptoTransform接口的对象。

  最后,现在使用BinaryReader的ReadBytes方法读取源文件,它会返回一个字节数组。BinaryReader读取源文件的输入流,在作为CryptoStream.Write方法的参数时调用ReadBytes方法。指定的CryptoStream实例被告知它应该操作的下层流,该对象将执行数据传递,无论流的目的是读或者写。

  下面是加密和解密一个文本文件的源程序片断:

代码如下:

namespace com.billdawson.crypto
{
class TextFileCrypt
{
public static void Main(string[] args)
{
string file = args[0];
string tempfile = Path.GetTempFileName();
//打开指定的文件
FileStream fsIn = File.Open(file,FileMode.Open,
FileAccess.Read);
FileStream fsOut = File.Open(tempfile, FileMode.Open,
FileAccess.Write);
//定义对称算法对象实例和接口
SymmetricAlgorithm symm = new RijndaelManaged();
ICryptoTransform transform = symm.CreateEncryptor();
CryptoStream cstream = new CryptoStream(fsOut,transform,
ryptoStreamMode.Write);

BinaryReader br = new BinaryReader(fsIn);
// 读取源文件到cryptostream
cstream.Write(br.ReadBytes((int)fsIn.Length),0,(int)fsIn.Length);
cstream.FlushFinalBlock();
cstream.Close();
fsIn.Close();
fsOut.Close();

Console.WriteLine("created encrypted file {0}", tempfile);
Console.WriteLine("will now decrypt and show contents");

// 反向操作--解密刚才加密的临时文件
fsIn = File.Open(tempfile,FileMode.Open,FileAccess.Read);
transform = symm.CreateDecryptor();
cstream = new CryptoStream(fsIn,transform,
CryptoStreamMode.Read);

StreamReader sr = new StreamReader(cstream);
Console.WriteLine("decrypted file text: " + sr.ReadToEnd());
fsIn.Close();
}
}
}

加密网络数据

  如果我有一个只想自己看到的文档,我不会简单的通过e-mail发送给你。我将使用对称算法加密它;如果有人截取了它,他们也不能阅读该文档,因为他们没有用于加密的唯一密钥。但是你也没有密钥。我需要使用某种方式将密钥给你,这样你才能解密文档,但是不能冒密钥和文档被截取的风险。

  非对称算法就是一种解决方案。这类算法使用的两个密钥有如下关系:使用公共密钥加密的信息只能被相应的私有密钥解密。因此,我首要求你给我发送你的公共密钥。在发送给我的途中可能有人会截取它,但是没有关系,因为他们只能使用该密钥给你的信息加密。我使用你的公共密钥加密文档并发送给你。你使用私有密钥解密该文档,这是唯一可以解密的密钥,并且没有通过网络传递。

  不对称算法比对称算法计算的花费多、速度慢。因此我们不希望在线对话中使用不对称算法加密所有信息。相反,我们使用对称算法。下面的例子中我们使用不对称加密来加密对称密钥。接着就使用对称算法加密了。实际上安全接口层(SSL)建立服务器和浏览器之间的安全对话使用的就是这种工作方式。
示例是一个TCP程序,分为服务器端和客户端。服务器端的工作流程是:

   从客户端接收公共密钥。

   使用公共密钥加密未来使用的对称密钥。

   将加密了的对称密钥发送给客户端。

   给客户端发送使用该对称密钥加密的信息。

  代码如下:


代码如下:

namespace com.billdawson.crypto
{
public class CryptoServer
{
private const int RSA_KEY_SIZE_BITS = 1024;
private const int RSA_KEY_SIZE_BYTES = 252;
private const int TDES_KEY_SIZE_BITS = 192;

public static void Main(string[] args)
{
int port;
string msg;
TcpListener listener;
TcpClient client;
SymmetricAlgorithm symm;
RSACryptoServiceProvider rsa;
//获取端口
try
{
port = Int32.Parse(args[0]);
msg = args[1];
}
catch
{
Console.WriteLine(USAGE);
return;
}
//建立监听
try
{
listener = new TcpListener(port);
listener.Start();
Console.WriteLine("Listening on port {0}",port);

client = listener.AcceptTcpClient();
Console.WriteLine("connection.");
}
catch (Exception e)
{
Console.WriteLine(e.Message);
Console.WriteLine(e.StackTrace);
return;
}

try
{
rsa = new RSACryptoServiceProvider();
rsa.KeySize = RSA_KEY_SIZE_BITS;

// 获取客户端公共密钥
rsa.ImportParameters(getClientPublicKey(client));

symm = new TripleDESCryptoServiceProvider();
symm.KeySize = TDES_KEY_SIZE_BITS;

//使用客户端的公共密钥加密对称密钥并发送给客。
encryptAndSendSymmetricKey(client, rsa, symm);

//使用对称密钥加密信息并发送
encryptAndSendSecretMessage(client, symm, msg);
}
catch (Exception e)
{
Console.WriteLine(e.Message);
Console.WriteLine(e.StackTrace);
}
finally
{
try
{
client.Close();
listener.Stop();
}
catch
{
//错误
}
Console.WriteLine("Server exiting");
}
}

private static RSAParameters getClientPublicKey(TcpClient client)
{
// 从字节流获取串行化的公共密钥,通过串并转换写入类的实例
byte[] buffer = new byte[RSA_KEY_SIZE_BYTES];
NetworkStream ns = client.GetStream();
MemoryStream ms = new MemoryStream();
BinaryFormatter bf = new BinaryFormatter();
RSAParameters result;

int len = 0;
int totalLen = 0;

while(totalLen
(len = ns.Read(buffer,0,buffer.Length))>0)
{
totalLen+=len;
ms.Write(buffer, 0, len);
}

ms.Position=0;

result = (RSAParameters)bf.Deserialize(ms);
ms.Close();

return result;

}

private static void encryptAndSendSymmetricKey(
TcpClient client,
RSACryptoServiceProvider rsa,
SymmetricAlgorithm symm)
{
// 使用客户端的公共密钥加密对称密钥
byte[] symKeyEncrypted;
byte[] symIVEncrypted;

NetworkStream ns = client.GetStream();

symKeyEncrypted = rsa.Encrypt(symm.Key, false);
symIVEncrypted = rsa.Encrypt(symm.IV, false);

ns.Write(symKeyEncrypted, 0, symKeyEncrypted.Length);
ns.Write(symIVEncrypted, 0, symIVEncrypted.Length);

}

private static void encryptAndSendSecretMessage(TcpClient client,
SymmetricAlgorithm symm,
string secretMsg)
{
// 使用对称密钥和初始化矢量加密信息并发送给客户端
byte[] msgAsBytes;
NetworkStream ns = client.GetStream();
ICryptoTransform transform =
symm.CreateEncryptor(symm.Key,symm.IV);
CryptoStream cstream =
new CryptoStream(ns, transform, CryptoStreamMode.Write);

msgAsBytes = Encoding.ASCII.GetBytes(secretMsg);

cstream.Write(msgAsBytes, 0, msgAsBytes.Length);
cstream.FlushFinalBlock();
}
}

客户端的工作流程是:

   建立和发送公共密钥给服务器。

   从服务器接收被加密的对称密钥。

   解密该对称密钥并将它作为私有的不对称密钥。

   接收并使用不对称密钥解密信息。

  代码如下:


代码如下:

namespace com.billdawson.crypto
{
public class CryptoClient
{
private const int RSA_KEY_SIZE_BITS = 1024;
private const int RSA_KEY_SIZE_BYTES = 252;
private const int TDES_KEY_SIZE_BITS = 192;
private const int TDES_KEY_SIZE_BYTES = 128;
private const int TDES_IV_SIZE_BYTES = 128;
public static void Main(string[] args)
{
int port;
string host;
TcpClient client;
SymmetricAlgorithm symm;
RSACryptoServiceProvider rsa;

if (args.Length!=2)
{
Console.WriteLine(USAGE);
return;
}

try
{
host = args[0];
port = Int32.Parse(args[1]);
}
catch
{
Console.WriteLine(USAGE);
return;
}

try //连接
{
client = new TcpClient();
client.Connect(host,port);
}
catch(Exception e)
{
Console.WriteLine(e.Message);
Console.Write(e.StackTrace);
return;
}

try
{
Console.WriteLine("Connected. Sending public key.");
rsa = new RSACryptoServiceProvider();
rsa.KeySize = RSA_KEY_SIZE_BITS;
sendPublicKey(rsa.ExportParameters(false),client);
symm = new TripleDESCryptoServiceProvider();
symm.KeySize = TDES_KEY_SIZE_BITS;

MemoryStream ms = getRestOfMessage(client);
extractSymmetricKeyInfo(rsa, symm, ms);
showSecretMessage(symm, ms);
}
catch(Exception e)
{
Console.WriteLine(e.Message);
Console.Write(e.StackTrace);
}
finally
{
try
{
client.Close();
}
catch { //错误
}
}
}

private static void sendPublicKey(
RSAParameters key,
TcpClient client)
{
NetworkStream ns = client.GetStream();
BinaryFormatter bf = new BinaryFormatter();
bf.Serialize(ns,key);
}

private static MemoryStream getRestOfMessage(TcpClient client)
{
//获取加密的对称密钥、初始化矢量、秘密信息。对称密钥用公共RSA密钥
//加密,秘密信息用对称密钥加密
MemoryStream ms = new MemoryStream();
NetworkStream ns = client.GetStream();
byte[] buffer = new byte[1024];

int len=0;

// 将NetStream 的数据写入内存流
while((len = ns.Read(buffer, 0, buffer.Length))>0)
{
ms.Write(buffer, 0, len);
}
ms.Position = 0;
return ms;
}

private static void extractSymmetricKeyInfo(
RSACryptoServiceProvider rsa,
SymmetricAlgorithm symm,
MemoryStream msOrig)
{
MemoryStream ms = new MemoryStream();

// 获取TDES密钥--它被公共RSA密钥加密,使用私有密钥解密
byte[] buffer = new byte[TDES_KEY_SIZE_BYTES];
msOrig.Read(buffer,0,buffer.Length);
symm.Key = rsa.Decrypt(buffer,false);

// 获取TDES初始化矢量
buffer = new byte[TDES_IV_SIZE_BYTES];
msOrig.Read(buffer, 0, buffer.Length);
symm.IV = rsa.Decrypt(buffer,false);
}

private static void showSecretMessage(
SymmetricAlgorithm symm,
MemoryStream msOrig)
{
//内存流中的所有数据都被加密了
byte[] buffer = new byte[1024];
int len = msOrig.Read(buffer,0,buffer.Length);

MemoryStream ms = new MemoryStream();
ICryptoTransform transform =
symm.CreateDecryptor(symm.Key,symm.IV);
CryptoStream cstream =new CryptoStream(ms, transform,
CryptoStreamMode.Write);
cstream.Write(buffer, 0, len);
cstream.FlushFinalBlock();

// 内存流现在是解密信息,是字节的形式,将它转换为字符串
ms.Position = 0;
len = ms.Read(buffer,0,(int) ms.Length);
ms.Close();

string msg = Encoding.ASCII.GetString(buffer,0,len);
Console.WriteLine("The host sent me this secret message:");
Console.WriteLine(msg);
}
}
}

使用对称算法加密本地数据时比较适合。在保持代码通用时我们可以选择多种算法,当数据通过特定的CryptoStream时算法使用转换对象加密该数据。需要将数据通过网络发送时,首先使用接收的公共不对称密钥加密对称密钥。

本文只涉及到System.Security.Cryptography名字空间的一部分服务。尽管文章保证只有某个私有密钥可以解密相应公共密钥加密的信息,但是它没有保证是谁发送的公共密钥,发送者也可能是假的。需要使用处理数字证书的类来对付该风险。

(0)

相关推荐

  • asp.net web.config加密解密方法

    使用命令行工具aspnet_regiis.exe 你还能够使用aspnet_regiis.exe命令行工具来加密和解密Web.config文件配置部分,你可以在"%WINDOWSDIR%\Microsoft.Net\Framework\version"目录下找到这个工具.为了加密Web.config文件中的一个节,你可以在这个命令行工具中使用DPAPI机器密钥,如下所示: 加密一个特定网站的Web.config文件的通用形式: 复制代码 代码如下: aspnet_regiis.exe

  • asp.net下XML的加密和解密实现方法

    介绍 我们有3个加密xml的方法 1.仅仅使用对称加密的方法加密xml 这种加密方法只使用一个密钥,也就是说无论是加密xml还是解密xml都使用一个相同的密钥.因为这个密钥不会在被加密的xml中保存,所以我们需要在加密和解密的过程中加载这个密钥并保护它不被窃取. 2.使用对称加密和非对称加密相结合的方法来加密xml 这种方法需要一个用于加密数据的对称密钥和一个用于保护这个对称密钥的非对称密钥.被加密的对称密钥和被加密的数据一起保存在xml文档中.当用私有非对称密钥解密密钥的时候要用公开非对称密钥

  • asp.net 字符串加密解密技术

    复制代码 代码如下: using System; using System.Data; using System.Configuration; using System.Collections; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using Syste

  • asp.net TripleDES加密、解密算法

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Security.Cryptography; using System.IO; namespace WindowsFormsApplication1 { #region TripleDES算法 public class ClassTripleDES { public ClassTripleDES()

  • asp.net 对中文汉字的加密与解密代码

    复制代码 代码如下: protected void Page_Load(object sender, EventArgs e) { //加密算法 string username = "我是陈建勇"; //MD5加密 - 得到32位加密数据,数据不好解密.过于复杂. username =FormsAuthentication.HashPasswordForStoringInConfigFile(username, "MD5"); //SHA1加密 - 得到40位加密数

  • 解析Asp.net,C# 纯数字加密解密字符串的应用

    继上篇:Asp.net,C# 加密解密字符串的使用详解,有网友提问: 也就是说加密后的数据不再是:N8lAaHMFtSAQgaf3+RUFng== 希望encryptedString是"120387789370480938409832840923492384028934-"; 当然上面的数字是我随便乱敲的. 那么如何实现纯数字呢?? 想法很简单,只要将字符变成Ascll 码就可以了.例如a:97, =:61; 那么encryptedString 就可以变成 97 81 61 33 44

  • .net调用JScript脚本及JS url加密解密

    .net 使用escape 和 unescape方法: 在 C# 里,使用 escape 和 unescape,添加引用: Microsoft.JScript string strEscaped = Microsoft.JScript.GlobalObject.escape("测试打"); 注意:js的一些函数,在 jscript.net 里,全部放在 GlobalObject 下 同样, 就可以使用 unescape, encodeURI, decodeURI 等等的函数了. 或者S

  • Asp.net,C# 加密解密字符串的使用详解

    首先在web.config | app.config 文件下增加如下代码: 复制代码 代码如下: <?xml version="1.0"?>  <configuration>    <appSettings>      <add key="IV" value="SuFjcEmp/TE="/>      <add key="Key" value="KIPSToILG

  • 浅谈.NET中加密和解密的实现方法分享

    .NET将原来独立的API和SDK合并到一个框架中,这对于程序开发人员非常有利.它将CryptoAPI改编进.NET的System.Security.Cryptography名字空间,使密码服务摆脱了SDK平台的神秘性,变成了简单的.NET名字空间的使用.由于随着整个框架组件一起共享,密码服务更容易实现了,现在仅仅需要学习 System.Security.Cryptography名字空间的功能和用于解决特定方案的类. 加密和解密的算法 System.Security.Cryptography名字

  • 浅谈Java中hashCode的正确求值方法

    本文研究的主要是Java中hashCode的正确求值方法的相关内容,具体如下. 散列表有一项优化,可以将对象的散列码(hashCode)缓存起来,如果散列码不匹配,就不会检查对象的等同性而直接认为成不同的对象.如果散列码(hashCode)相等,才会检测对象是否相等(equals). 如果对象具有相同的散列码(hashCode),他们会被映射到同一个散列桶中.如果散列表中所有对象的散列码(hashCode)都一样,那么该散列表就会退化为链表(linked list),从而大大降低其查询效率. 一

  • 浅谈Django中view对数据库的调用方法

    question: Django中对数据库的调用非常的隐蔽,在各种复杂的模块互相拼接继承中很难发现获取数据库内容的部分 来,开始试图理解一下下 首先,数据库中的表对应的是model中的每一个类,类中的变量对应表的属性,通常属性名就是变量名.有一个比较特殊的东西就是ForeignKey,它代表了与其他表的关联约束键,即SQL中的约束键,通常和其他表中的主键primary key相关联. 理解了model是我们定义的数据表,接下来的事情就会越发的简单,我们都知道网页中的data信息是通过Django

  • 浅谈Python中函数的定义及其调用方法

    一.函数的定义及其应用 所谓函数,就是把具有独立功能的代码块组织成为一个小模块,在需要的时候调用函数的使用包含两个步骤 1.定义函数–封装独立的功能 2.调用函数–享受封装的成果 函数的作用:在开发时,使用函数可以提高编写的效率以及代码的重用'' 函数: 函数是带名字的代码块,用于完成具体的工作 需要在程序中多次执行同一项任务时,你无需反复编写完成该任务的代码,而只需调用该任务的函数,让python运行其中的代码,你将发现,通过使用函数,程序编写,阅读,测试和修复都将更容易 1.定义函数 def

  • 浅谈C#中HttpWebRequest与HttpWebResponse的使用方法

    这个类是专门为HTTP的GET和POST请求写的,解决了编码,证书,自动带Cookie等问题. C# HttpHelper,帮助类,真正的Httprequest请求时无视编码,无视证书,无视Cookie,网页抓取 1.第一招,根据URL地址获取网页信息 先来看一下代码 get方法 public static string GetUrltoHtml(string Url,string type) { try { System.Net.WebRequest wReq = System.Net.Web

  • 浅谈Android中多线程切换的几种方法

    我们知道,多线程是Android开发中必现的场景,很多原生API和开源项目都有多线程的内容,这里简单总结和探讨一下常见的多线程切换方式. 我们先回顾一下Java多线程的几个基础内容,然后再分析总结一些经典代码中对于线程切换的实现方式. 几点基础 多线程切换,大概可以切分为这样几个内容:如何开启多个线程,如何定义每个线程的任务,如何在线程之间互相通信. Thread Thread可以解决开启多个线程的问题. Thread是Java中实现多线程的线程类,每个Thread对象都可以启动一个新的线程,注

  • 浅谈正则表达式中的分组和引用实现方法

    问题 在外刊君读者群中看到有人提出这样的一个需求: 把字符串切成连续相同字符的正则怎么写?比如abbcccdddd切成a,bb,ccc,dddd 之前我对正则表达式也是略有研究,想尝试一下.其实我对正则表达式的学习基本完全来源于犀牛书的第10章,真正看懂这一章,我觉得操作正则表达式应该不在话下. 我的答案 先给出我的答案吧: 'abbccddd'.match(/(\w)\1*/g) // ["a", "bb", "cc", "ddd&q

  • 浅谈PHP中的数据传输CURL

    确认是否安装了CURL扩展 Linux下命令: [root@fengniu020 ~]# php -i | grep -i curl Additional .ini files parsed => /etc/php.d/curl.ini, curl cURL support => enabled cURL Information => 7.19.7 curl操作步骤解析: CURL实例 1.一个简单的curl,抓取百度首页 2.下载一个网页并把内容中的"百度"替换为&

  • 浅谈angularjs中响应回车事件

    下面这个示例在输入框键入回车键或者点击按钮时,将输入框的值置为"Hello World!":(黄色背景内容为响应回车事件涉及到的代码) <html ng-app="myApp"> <head> <meta charset="utf-8"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8&quo

  • 浅谈android中数据库的拷贝

    SQLiteDatabase不支持直接从assets读取文件,所以要提前拷贝数据库.在读取数据库时,先在项目中建立assets文件夹用于存放外部文件,将数据库文件拷到该目录下. 代码方法: /** * 拷贝数据库至file文件夹下 * @param dbName 数据库名称 */ private void initAddressDB(String dbName) { //1,在files文件夹下创建同名dbName数据库文件过程 File files=getFilesDir();//获取/dat

随机推荐