Java编程用栈来求解汉诺塔问题的代码实例(非递归)

【题目】

  汉诺塔问题比较经典,这里修改一下游戏规则:现在限制不能从最左侧的塔直接移动到最右侧,也不能从最右侧直接移动到最左侧,而是必须经过中间。求当塔有N层的时候,打印最优移动过程和最优移动总步数。

【解答】

  上一篇用的是递归的方法解决这个问题,这里我们用栈来模拟汉诺塔的三个塔,也就是不用递归的方法

  原理是这样的:修改后的汉诺塔问题不能让任何塔从左直接移动到右,也不能从右直接移动到左,而是要经过中间,也就是说,实际上能做的动作,只有四个:左->中,中->左,中->右,右->中

  用栈来模拟汉诺塔的移动,其实就是某一个栈弹出栈顶元素,压入到另一个栈中,作为另一个栈的栈顶,理解了这个就好说了,对于这个问题,有两个原则:

  一:小压大原则,也就是,要压入的元素值不能大于要压入的栈的栈顶的元素值,这也是汉诺塔的基本规则

  二:相邻不可逆原则,也就是,我上一步的操作如果是左->中,那么下一步的操作一定不是中->左,否则就相当于是移过去又移回来

  有了这两个原则,就可以推导出两个非常有用的结论:

  1、游戏的第一个动作一定是L->M

  2、在走出最小步数过程中的任何时刻,四个动作中只有一个动作不违反小压大和相邻不可逆原则,另外三个动作一定都会违反

【代码实现】

import java.util.Stack;
class Demo{
  public enum Action{
    No,LToM,MToL,MToR,RToM
  }

  //num是盘子的数量,left,mid,right分别代表左中右三个柱子
  public static int hanoi(int num,String left,String mid,String right){
    //lS,mS,rS代表左中右三个栈(模拟柱子)
    Stack<Integer> lS = new Stack<Integer>();
    Stack<Integer> mS = new Stack<Integer>();
    Stack<Integer> rS = new Stack<Integer>();
    lS.push(Integer.MAX_VALUE);
    mS.push(Integer.MAX_VALUE);
    rS.push(Integer.MAX_VALUE);
    for(int i=num;i>0;i--){
      lS.push(i);
    }
    Action[] record = { Action.No };
    int step = 0;
    while(rS.size() != num+1){
      step += fStackToStack(record,Action.MToL,Action.LToM,lS,mS,left,mid);
      step += fStackToStack(record,Action.LToM,Action.MToL,mS,lS,mid,left);
      step += fStackToStack(record,Action.MToR,Action.RToM,rS,mS,right,mid);
      step += fStackToStack(record,Action.RToM,Action.MToR,mS,rS,mid,right);
    }
    return step;
  }

  //preNoAct是与现在所要进行的动作相反的动作,nowAct是现在所要进行的动作
  public static int fStackToStack(Action[] record,Action preNoAct,Action nowAct,Stack<Integer> fStack,Stack<Integer> tStack,String from,String to){
    if(record[0] != preNoAct && fStack.peek() < tStack.peek()){
      tStack.push(fStack.pop());
      System.out.println("Move " + tStack.peek() + " " + from + "->" + to);
      record[0] = nowAct;
      return 1;
    }
    return 0;
  }

  public static void main(String[] args){
    int i = hanoi(3,"left","mid","right");
    System.out.println("一共走了" + i + "步");
  }
}

总结

以上就是本文关于Java编程用栈来求解汉诺塔问题的代码实例(非递归)的全部内容,希望对大家有所帮助。感兴趣的朋友可以参阅:Java 蒙特卡洛算法求圆周率近似值实例详解、Java遗传算法之冲出迷宫、Java实现四则混合运算代码示例等,有什么问题可以随时留言,欢迎大家交流讨论。

(0)

相关推荐

  • Java实现栈和队列面试题

    面试的时候,栈和队列经常会成对出现来考察.本文包含栈和队列的如下考试内容: (1)栈的创建 (2)队列的创建 (3)两个栈实现一个队列 (4)两个队列实现一个栈 (5)设计含最小函数min()的栈,要求min.push.pop.的时间复杂度都是O(1) (6)判断栈的push和pop序列是否一致 1.栈的创建: 我们接下来通过链表的形式来创建栈,方便扩充. 代码实现: public class Stack { public Node head; public Node current; //方法

  • java使用泛型实现栈结构示例分享

    思路分析:既然是用泛型实现栈结构,那就不能用JDK自带的stack包了,需要自己定义一个栈结构,比如LinkedList. 代码如下: Stack.java: 复制代码 代码如下: package cn.edu.xidian.crytoll;import java.util.LinkedList; public class Stack<T> { private LinkedList<T> container = new LinkedList<T>(); public v

  • 输出java进程的jstack信息示例分享 通过线程堆栈信息分析java线程

    复制代码 代码如下: #!/bin/shpro_name=java #process namekeys=`ps -ef |grep "$pro_name" |grep -v "grep" | awk '{print $2}'`nowdate=`date +%Y%m%d%H%M%S` jstackpath="/usr/java/jdk1.6.0_07/bin/jstack"cpulogpath="/home/" for key

  • 基于NodeJS的前后端分离的思考与实践(六)Nginx + Node.js + Java 的软件栈部署实践

    淘宝网线上应用的传统软件栈结构为 Nginx + Velocity + Java,即: 在这个体系中,Nginx 将请求转发给 Java 应用,后者处理完事务,再将数据用 Velocity 模板渲染成最终的页面. 引入 Node.js 之后,我们势必要面临以下几个问题: 技术栈的拓扑结构该如何设计,部署方式该如何选择,才算是科学合理?项目完成后,该如何切分流量,对运维来说才算是方便快捷?遇到线上的问题,如何最快地解除险情,避免更大的损失?如何确保应用的健康情况,在负载均衡调度的层面加以管理?承系

  • Java编程用栈来求解汉诺塔问题的代码实例(非递归)

    [题目] 汉诺塔问题比较经典,这里修改一下游戏规则:现在限制不能从最左侧的塔直接移动到最右侧,也不能从最右侧直接移动到最左侧,而是必须经过中间.求当塔有N层的时候,打印最优移动过程和最优移动总步数. [解答] 上一篇用的是递归的方法解决这个问题,这里我们用栈来模拟汉诺塔的三个塔,也就是不用递归的方法 原理是这样的:修改后的汉诺塔问题不能让任何塔从左直接移动到右,也不能从右直接移动到左,而是要经过中间,也就是说,实际上能做的动作,只有四个:左->中,中->左,中->右,右->中 用栈

  • Java基于栈方式解决汉诺塔问题实例【递归与非递归算法】

    本文实例讲述了Java基于栈方式解决汉诺塔问题.分享给大家供大家参考,具体如下: /** * 栈方式非递归汉诺塔 * @author zy * */ public class StackHanoi { /** * @param args */ public static void main(String[] args) { System.out.println("我们测试结果:"); System.out.println("递归方式:"); hanoiNormal(

  • Java SE求解汉诺塔问题的示例代码

    目录 1.问题描述 2.画图分析 3.问题讲解 4.代码实现 1.问题描述 汉诺塔问题是一个经典的问题.汉诺塔(Hanoi Tower),又称河内塔,源于印度一个古老传说. 大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘. 大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上. 并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘. 问应该如何操作? 2.画图分析 一个圆盘的情况:移动前 移动后 1个盘子:A直

  • Java通过递归算法解决迷宫与汉诺塔及八皇后问题

    目录 1.递归的重要规则 2.递归的三个案例 1.老鼠出迷宫 2.汉诺塔 3.八皇后 1.递归的重要规则 在执行一个方法时,就创建一个新的受保护的独立空间(栈空间). 方法的局部变量时独立的,不会相互影响. 如果方法中使用的是应用类型变量(比如数组,对象),就会共享该引用类型的数据. 递归必须向退出递归的条件逼近,否则就是无限递归. 当一个方法执行完毕,或者遇到return,就会返回,遵循谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕. 2.递归的三个案例 1.老鼠出

  • python求解汉诺塔游戏

    本文实例为大家分享了python求解汉诺塔游戏的具体代码,供大家参考,具体内容如下 一.问题定义 百度百科定义:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.据说大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照从小到大顺序摞着64片黄金圆盘.大梵天命令婆罗门借助其中一根柱子,把64片黄金圆盘重新摆放到第三个根柱子上.并且规定,在小黄金圆盘上不能放大的黄金圆盘,在三根柱子之间一次只能移动一个圆盘. 例如,如果黄金圆盘只有3片,则为了满足游戏规则,那么必须按照如下图所示的

  • Java 细致图解带你分析汉诺塔

    目录 一.汉诺塔问题来源 二.问题分析 从简单问题开始 三.解决问题 整体思路 四.婆罗门能否完成大梵天的任务 移动 64 个盘子需要多长时间 计算机移动64个盘子需要多长时间 ? 一.汉诺塔问题来源 汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只

  • JavaSE递归求解汉诺塔问题的思路与方法

    目录 1. 汉诺塔的介绍和玩法 2. 汉诺塔问题的思路 3. 用递归的代码实现 总结 1. 汉诺塔的介绍和玩法 汉诺塔(Tower of Hanoi),又称河内塔,是一个源于印度古老传说的益智玩具. 一共有3根柱子(A.B.C),A柱子由下到上放着由大到小的盘子,我们需要将A柱子上的盘子移到C柱子上,每次只能移动一个盘子,且在任意一次移动中,大盘子都必须处于小盘子下方. 2. 汉诺塔问题的思路 若A柱子上只有1个盘子,只需要移动1步:A->C 若A柱子上有2个盘子,需要移动3步:A->B,A-

  • java求解汉诺塔问题示例

    思路如下: 要实现3阶汉诺塔的求解步骤,也就是说初始状态时,A上从上到下有三个盘子,分别为1号盘.2号盘和3号盘,其中1号盘最小,3号盘最大:判断剩余盘子个数,如果只有一个盘子就退出迭代,如果有大于一个盘子就继续迭代.代码如下: 复制代码 代码如下: public class HanoiTower {    public static void moveDish(int level, char from, char inter, char to) {        if (level == 1)

  • 简单的汉诺塔问题解法代码

    以前学东西不扎实,现在捡捡也好,汉诺塔本是C语言开门就学的东西,不过上课那会儿真心听不懂,直到大二了,才明白那是咋回事,我感觉的编程,真的是一张窗户纸,不过捅破要花时间理解吸收. 题目描述:有一个塔,塔内有A,B,C三个柱子.起初,A柱上有n个盘子,依次由大到小.从下往上堆放,要求将它们全部移到C柱上:在移动过程中可以利用B柱,但每次只能移到一个盘子,且必须使三个柱子上始终保持大盘在下,小盘在上的状态.要求编程输出移动的步骤. 代码如下: 复制代码 代码如下: #include<stdio.h>

  • Java使用递归法解决汉诺塔问题的代码示例

    汉诺(Hanoi)塔问题:古代有一个梵塔,塔内有三个座A.B.C,A座上有n个盘子,盘子大小不等,大的在下,小的在上(如图). 有一个和尚想把这n个盘子从A座移到B座,但每次只能允许移动一个盘子,并且在移动过程中,3个座上的盘子始终保持大盘在下,小盘在上.在移动过程中可以利用B座,要求打印移动的步骤.如果只有一个盘子,则不需要利用B座,直接将盘子从A移动到C. 如果有2个盘子,可以先将盘子1上的盘子2移动到B:将盘子1移动到c:将盘子2移动到c.这说明了:可以借助B将2个盘子从A移动到C,当然,

随机推荐