让代码变得更易维护的7个Python库

随着软件项目进入“维护模式”,对可读性和编码标准的要求很容易落空(甚至从一开始就没有建立过那些标准)。然而,在代码库中保持一致的代码风格和测试标准能够显著减轻维护的压力,也能确保新的开发者能够快速了解项目的情况,同时能更好地全程保持应用程序的质量。

使用外部库来检查代码的质量不失为保护项目未来可维护性的一个好方法。以下会推荐一些我们最喜爱的 检查代码 (包括检查 PEP 8 和其它代码风格错误)的库,用它们来强制保持代码风格一致,并确保在项目成熟时有一个可接受的测试覆盖率。

检查你的代码风格

PEP 8 是 Python 代码风格规范,它规定了类似行长度、缩进、多行表达式、变量命名约定等内容。尽管你的团队自身可能也会有稍微不同于 PEP 8 的代码风格规范,但任何代码风格规范的目标都是在代码库中强制实施一致的标准,使代码的可读性更强、更易于维护。下面三个库就可以用来帮助你美化代码。

1、Pylint

Pylint 是一个检查违反 PEP 8 规范和常见错误的库。它在一些流行的 编辑器和 IDE 中都有集成,也可以单独从命令行运行。

执行 pip install pylint 安装 Pylint 。然后运行 pylint [options] path/to/dir 或者 pylint [options] path/to/module.py 就可以在命令行中使用 Pylint,它会向控制台输出代码中违反规范和出现错误的地方。

你还可以使用 pylintrc 配置文件 来自定义 Pylint 对哪些代码错误进行检查。

2、Flake8

Flake8 是“将 PEP 8、Pyflakes(类似 Pylint)、McCabe(代码复杂性检查器)和第三方插件整合到一起,以检查 Python 代码风格和质量的一个 Python 工具”。

执行 pip install flake8 安装 flake8 ,然后执行 flake8 [options] path/to/dir 或者 flake8 [options] path/to/module.py 可以查看报出的错误和警告。

和 Pylint 类似,Flake8 允许通过 配置文件 来自定义检查的内容。它有非常清晰的文档,包括一些有用的 提交钩子 ,可以将自动检查代码纳入到开发工作流程之中。

Flake8 也可以集成到一些流行的编辑器和 IDE 当中,但在文档中并没有详细说明。要将 Flake8 集成到喜欢的编辑器或 IDE 中,可以搜索插件(例如 Sublime Text 的 Flake8 插件 )。

3、Isort

Isort 这个库能将你在项目中导入的库按字母顺序排序,并将其 正确划分为不同部分 (例如标准库、第三方库、自建的库等)。这样提高了代码的可读性,并且可以在导入的库较多的时候轻松找到各个库。

执行 pip install isort 安装 isort,然后执行 isort path/to/module.py 就可以运行了。文档中还提供了更多的配置项,例如通过 配置 .isort.cfg 文件来决定 isort 如何处理一个库的多行导入。

和Flake8、Pylint 一样,isort 也提供了将其与流行的 编辑器和 IDE 集成的插件。

分享你的代码风格

每次文件发生变动之后都用命令行手动检查代码是一件痛苦的事,你可能也不太喜欢通过运行 IDE 中某个插件来实现这个功能。同样地,你的同事可能会用不同的代码检查方式,也许他们的编辑器中也没有那种插件,甚至你自己可能也不会严格检查代码和按照警告来更正代码。总之,你分享出来的代码库将会逐渐地变得混乱且难以阅读。

一个很好的解决方案是使用一个库,自动将代码按照 PEP 8 规范进行格式化。我们推荐的三个库都有不同的自定义级别来控制如何格式化代码。其中有一些设置较为特殊,例如 Pylint 和 Flake8 ,你需要先行测试,看看是否有你无法忍受但又不能修改的默认配置。

4、Autopep8

Autopep8 可以自动格式化指定的模块中的代码,包括重新缩进行、修复缩进、删除多余的空格,并重构常见的比较错误(例如布尔值和 None 值)。你可以查看文档中完整的 更正列表。

运行 pip install --upgrade autopep8 安装 Autopep8。然后执行 autopep8 --in-place --aggressive --aggressive <filename> 就可以重新格式化你的代码。aggressive 选项的数量表示 Auotopep8 在代码风格控制上有多少控制权。在这里可以详细了解 aggressive 选项。

5、Yapf

Yapf 是另一种有自己的 配置项 列表的重新格式化代码的工具。它与 Autopep8 的不同之处在于它不仅会指出代码中违反 PEP 8 规范的地方,还会对没有违反 PEP 8 但代码风格不一致的地方重新格式化,旨在令代码的可读性更强。

执行 pip install yapf 安装 Yapf,然后执行 yapf [options] path/to/dir yapf [options] path/to/module.py 可以对代码重新格式化。 定制选项 的完整列表在这里。

6、Black

Black 在代码检查工具当中算是比较新的一个。它与 Autopep8 和 Yapf 类似,但限制较多,没有太多的自定义选项。这样的好处是你不需要去决定使用怎么样的代码风格,让 Black 来给你做决定就好。你可以在这里查阅 Black 有限的自定义选项 以及 如何在配置文件中对其进行设置 。

Black 依赖于 Python 3.6+,但它可以格式化用 Python 2 编写的代码。

执行 pip install black 安装 Black,然后执行 black path/to/dirblack path/to/module.py 就可以使用 Black 优化你的代码。

检查你的测试覆盖率

如果你正在进行编写测试,你需要确保提交到代码库的新代码都已经测试通过,并且不会降低测试覆盖率。虽然测试覆盖率不是衡量测试有效性和充分性的唯一指标,但它是确保项目遵循基本测试标准的一种方法。对于计算测试覆盖率,我们推荐使用 Coverage 这个库。

7、Coverage

Coverage 有数种显示测试覆盖率的方式,包括将结果输出到控制台或 HTML 页面,并指出哪些具体哪些地方没有被覆盖到。你可以通过 配置文件 自定义Coverage 检查的内容,让你更方便使用。

执行 pip install coverage 安装 Converage 。然后执行 coverage [path/to/module.py] [args] 可以运行程序并查看输出结果。如果要查看哪些代码行没有被覆盖,执行 coverage report -m 即可。

持续集成工具

持续集成(Continuous integration)(CI)是在合并和部署代码之前自动检查代码风格错误和测试覆盖率最小值的过程。很多免费或付费的工具都可以用于执行这项工作,具体的过程不在本文中赘述,但 CI 过程是令代码更易读和更易维护的重要步骤,关于这一部分可以参考 Travis CI 和 Jenkins 。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对我们的支持。如果你想了解更多相关内容请查看下面相关链接

(0)

相关推荐

  • Python爬虫常用库的安装及其环境配置

    Python常用库的安装 urllib.re 这两个库是Python的内置库,直接使用方法import导入即可. 在python中输入如下代码: import urllib import urllib.request response=urllib.request.urlopen("http://www.baidu.com") print(response) 返回结果为HTTPResponse的对象: <http.client.HTTPResponse object at 0x0

  • Python的argparse库使用详解

    argparse是python标准库里面用来处理命令行参数的库 命令行参数分为位置参数和选项参数: 位置参数就是程序根据该参数出现的位置来确定的 如:[root@openstack_1 /]# ls root/    #其中root/是位置参数 选项参数是应用程序已经提前定义好的参数,不是随意指定的 如:[root@openstack_1 /]# ls -l    # -l 就是ls命令里的一个选项参数. 基本使用 import argparse # 创建解析器 parser = argpars

  • Python爬虫基础之XPath语法与lxml库的用法详解

    前言 本来打算写的标题是XPath语法,但是想了一下Python中的解析库lxml,使用的是Xpath语法,同样也是效率比较高的解析方法,所以就写成了XPath语法和lxml库的用法 XPath 即为 XML 路径语言,它是一种用来确定 XML(标准通用标记语言的子集)文档中某部分位置的语言. XPath 基于 XML 的树状结构,提供在数据结构树中找寻节点的能力. XPath 同样也支持HTML. XPath 是一门小型的查询语言. python 中 lxml库 使用的是 Xpath 语法,是

  • Python连接Mssql基础教程之Python库pymssql

    前言 pymssql模块是用于sql server数据库(一种数据库通用接口标准)的连接.另外pyodbc不仅限于SQL server,还包括Oracle,MySQL,Access,Excel等. 另外除了pymssql,pyodbc还有其他几种连接SQL server的模块,感兴趣的可以在这里找到:https://wiki.python.org/moin/SQL%20Server 本文将详细介绍关于Python连接Mssql之Python库pymssql的相关内容,下面话不多说了,来一起看看详

  • Python中Proxypool库的安装与配置

    从github上下载,链接为:https://github.com/jhao104/proxy_pool 下载好之后解压文件,然后将文件夹目录内的D:\proxy_pool-master 这个文件修改成这个样式: 然后在命令行移动到 输入pip install -r requirements.txt下载命令即可. 打开D:\proxy_pool-master\ProxyGetter路径内的 这个文件内的部分代码注释掉. 接下来进行测试即可 总结 以上就是这篇文章的全部内容了,希望本文的内容对大家

  • 用于业余项目的8个优秀Python库

    在 Python/Django 的世界里有这样一个谚语:为语言而来,为社区而留.对绝大多数人来说的确是这样的,但是,还有一件事情使得我们一直停留在 Python 的世界里,不愿离开,那就是我们可以很容易地利用一顿午餐或晚上几个小时的时间,把一个想法快速地实现出来. 作为一门语言,你知道 Python 是如何获得现在的成功的吗? 不妨去看看它大量的库吧,不管是原生的,还是第三方的,可能会有所收获. 有这么多的库,也就不奇怪为什么有的很多人用,有的却没有引起多少人注意. 而且,专注于一个领域的程序员

  • 浅谈Python中的bs4基础

    安装 在命令提示符框中直接输入pip install beautifulsoup4 介绍 beautifulsoup是python的一个第三方库,和xpath一样,都是用来解析html数据的. 引入 from bs4 import BeautifulSoup 使用 将一段文档传入BeautifulSoup的构造方法,就能得到一个文档的对象. bs = BeautifulSoup(open('index.html',encoding='utf-8'),'lxml') print(bs) 注意:这样

  • Python BS4库的安装与使用详解

    Beautiful Soup 库一般被称为bs4库,支持Python3,是我们写爬虫非常好的第三方库.因用起来十分的简便流畅.所以也被人叫做"美味汤".目前bs4库的最新版本是4.60.下文会介绍该库的最基本的使用,具体详细的细节还是要看:[官方文档](Beautiful Soup Documentation) bs4库的安装 Python的强大之处就在于他作为一个开源的语言,有着许多的开发者为之开发第三方库,这样我们开发者在想要实现某一个功能的时候,只要专心实现特定的功能,其他细节与

  • Python使用bs4获取58同城城市分类的方法

    本文实例讲述了Python使用bs4获取58同城城市分类的方法.分享给大家供大家参考.具体如下: # -*- coding:utf-8 -*- #! /usr/bin/python import urllib import os, datetime, sys from bs4 import BeautifulSoup reload(sys) sys.setdefaultencoding( "utf-8" ) __BASEURL__ = "http://bj.58.com/&q

  • Python3.6简单的操作Mysql数据库的三个实例

    安装pymysql 参考:https://github.com/PyMySQL/PyMySQL/ pip install pymsql 实例一 import pymysql # 创建连接 # 参数依次对应服务器地址,用户名,密码,数据库 conn = pymysql.connect(host='127.0.0.1', user='root', passwd='123456', db='demo') # 创建游标 cursor = conn.cursor(cursor=pymysql.cursor

  • Python使用Flask-SQLAlchemy连接数据库操作示例

    本文实例讲述了Python使用Flask-SQLAlchemy连接数据库操作.分享给大家供大家参考,具体如下: 需要安装flask pip install flask 安装Mysql-Python (这个是py的mysql驱动,这个在官方没有win的支持,只有第三方才有py2.7的whl) pip install MySQL_python-1.2.5-cp27-none-win_amd64.whl 注:上述whl文件也可点击此处链接下载到本地安装:https://www.lfd.uci.edu/

  • Python wxPython库使用wx.ListBox创建列表框示例

    本文实例讲述了Python wxPython库使用wx.ListBox创建列表框.分享给大家供大家参考,具体如下: 如何创建一个列表框? 列表框是提供给用户选择的另一机制.选项被放置在一个矩形的窗口中,用户可以选择一个或多个.列表框比单选按钮占据较少的空间,当选项的数目相对少的时候,列表框是一个好的选择.然而,如果用户必须将滚动条拉很远才能看到所有的选项的话,那么它的效用就有所下降了.下图显示了一个wxPython列表框. 在wxPython中,列表框是类wx.ListBox的元素.该类的方法使

  • 3个用于数据科学的顶级Python库

    Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言.Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选. 由于其广泛的用途,Python拥有大量的库,使数据科学家可以更轻松地完成复杂的任务,而无需很多编写代码的麻烦.以下是数据科学的前3个Python库. 使用这些库将Python转化为一个科学的数据分析和建模工具. 1.NumPy NumPy(Numerical Python的缩写)是配备有用资源的顶级库之一,可帮助数据科学家将Pyth

  • Python运维开发之psutil库的使用详解

    介绍 psutil能够轻松实现获取系统运行的进程和系统利用率. 导入模块 import psutils 获取系统性能信息 CPU信息 使用cpu_times()方法获取CPU的完整信息: >>> psutil.cpu_times() 获取单项数据,例如用户user的CPU时间比: >>> psutil.cpu_times().user 获取CPU的个数: >>> psutil.cpu_count() # 默认logical=True,获取逻辑个数 &g

  • 对python3中pathlib库的Path类的使用详解

    用了很久的os.path,今天发现竟然还有这么好用的库,记录下来以便使用. 1.调用库 from pathlib import 2.创建Path对象 p = Path('D:/python/1.py') print(p) #可以这么使用,相当于os.path.join() p1 = Path('D:/python') p2 = p1/'123' print(p2) 结果 D:\python\1.py D:\python\123 3.Path.cwd() 获取当前路径 path = Path.cw

随机推荐