python+opencv实现阈值分割

最近老师留了几个作业,虽然用opencv很简单一句话就出来了,但是还没用python写过。在官方文档中的tutorial中的threshold里,看到可以创建两个滑动条来选择type和value,决定用python实现一下

注意python中的全局变量,用global声明

开始出现了一些问题,因为毁掉函数每次只能传回一个值,所以每次只能更新value,后来就弄了两个毁掉函数,这个时候,又出现了滑动其中一个,另一个的值就会变为默认值的情况,这个时候猜想是全局变量的问题,根据猜想改动之后果然是。
感觉还有更简单的方法,不需要设置两个回调参数,对python不是很熟悉,时间有限,先不折腾了

python+opencv实现高斯平滑滤波
python+opencv实现霍夫变换检测直线

(2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载

代码

# -*- coding: utf-8 -*- 

import cv2

#两个回调函数
def thresholdType(threshold_type):
 global THRESHOLD_TYPE
 THRESHOLD_TYPE = threshold_type
 print threshold_TYPE, threshold_VALUE
 ret, dst = cv2.threshold(scr, THRESHOLD_VALUE, max_value, THRESHOLD_TYPE)
 cv2.imshow(window_name,dst)

def thresholdValue(threshold_value):
 global THRESHOLD_VALUE
 THRESHOLD_VALUE = threshold_value
 print threshold_TYPE, threshold_VALUE
 ret, dst = cv2.threshold(scr, THRESHOLD_VALUE, max_value, THRESHOLD_TYPE)
 cv2.imshow(window_name,dst)

#全局变量
"""
"Type:
0: Binary
1: Binary Inverted
2: Truncate
3: To Zero
4: To Zero Inverted"
"""
THRESHOLD_VALUE = 0
THRESHOLD_TYPE = 3
max_value = 255
max_type = 4
max_BINARY_value = 255
window_name = "Threshold Demo"
trackbar_type = "Type"
trackbar_value = "Value"

#读入图片,模式为灰度图,创建窗口
scr = cv2.imread("G:\homework\SmallTarget.png",0)
cv2.namedWindow(window_name)

#创建滑动条
cv2.createTrackbar( trackbar_type, window_name, \
   threshold_type, max_type, thresholdType)
cv2.createTrackbar( trackbar_value, window_name, \
   threshold_value, max_value, thresholdValue )
#初始化
thresholdType(0)

if cv2.waitKey(0) == 27:
 cv2.destroyAllWindows()

执行

import threshold
>>> reload(threshold)
0 0
2 0
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 10
1 12
1 13
1 16
1 18

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python opencv 简单阈值算法的实现

    本文先了解一个简单阈值函数,以了解一个阈值算法的具体参数. 然后比较不同阈值函数的区别. 同样的,先用一副图说明本文重要大纲: #! usr/bin/env python # coding: utf-8 import cv2 img = cv2.imread('cat.jpg') img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 先将图像矩阵进行二值化 # img = cv2.imread('cat.jpg',0) # 也可以直接将图像用灰度值读入,其中0

  • Python+OpenCV实现阈值分割的方法详解

    目录 一.全局阈值 1.效果图 2.源码 二.滑动改变阈值(滑动条) 1.效果图 2.源码 三.自适应阈值分割 1.效果图 2.源码 3.GaussianBlur()函数去噪 四.参数解释 一.全局阈值 原图: 整幅图采用一个阈值,与图片的每一个像素灰度进行比较,重新赋值: 1.效果图 2.源码 import cv2 import matplotlib.pyplot as plt #设定阈值 thresh=130 #载入原图,并转化为灰度图像 img_original=cv2.imread(r'

  • python+opencv实现阈值分割

    最近老师留了几个作业,虽然用opencv很简单一句话就出来了,但是还没用python写过.在官方文档中的tutorial中的threshold里,看到可以创建两个滑动条来选择type和value,决定用python实现一下 注意python中的全局变量,用global声明 开始出现了一些问题,因为毁掉函数每次只能传回一个值,所以每次只能更新value,后来就弄了两个毁掉函数,这个时候,又出现了滑动其中一个,另一个的值就会变为默认值的情况,这个时候猜想是全局变量的问题,根据猜想改动之后果然是. 感

  • Python+OpenCV实现分水岭分割算法的示例代码

    目录 前言 1.使用分水岭算法进行分割 2.Watershed与random walker分割对比 前言 分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币. 使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币. 在使用分水岭算法时,我们必须从用户定义的标记开始.这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们. 基于这些标记,分水岭算法将

  • python+opencv图像分割实现分割不规则ROI区域方法汇总

    在图像分割领域,一个重要任务便是分割出感兴趣(ROI)区域.如果是简易的矩形ROI区域其实是非常容易分割的,opencv的官方python教程里也有教到最简易的矩形ROI分割(剪裁),其本质是多维数组(矩阵)的切片.但是现实情况中,ROI是不规则的多边形,也可能是曲线边界,那么该如何分割出来呢?下面总结几种思路. 可能只提供核心部分的代码示例,具体应用要结合你自己的项目来修正. 一.已知边界坐标,直接画出多边形 例:最基础的画个四边形 # 定义四个顶点坐标 pts = np.array([[10

  • python+opencv实现霍夫变换检测直线

    本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下 python+opencv实现高斯平滑滤波 python+opencv实现阈值分割 功能: 创建一个滑动条来控制检测直线的长度阈值,即大于该阈值的检测出来,小于该阈值的忽略 注意:这里用的函数是HoughLinesP而不是HoughLines,因为HoughLinesP直接给出了直线的断点,在画出线段的时候可以偷懒 代码: # -*- coding: utf-8 -*- import cv2

  • python+opencv实现高斯平滑滤波

    功能: 创建两个滑动条来分别控制高斯核的size和σσ的大小,这个程序是在阈值分割的那个程序上改动的.阈值分割程序在这 注意:由于σ=0σ=0时,opencv会根据窗口大小计算出σσ,所以,从0滑动σσ的滑动条时,会出现先边清晰又变模糊的现象 python+opencv实现阈值分割 python+opencv实现霍夫变换检测直线 (2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载 代码: # -*- coding: utf-8 -*-

  • Python OpenCV基于HSV的颜色分割实现示例

    目录 前言 1.什么是HSV 2.代码实战 2.1 createTrackbar使用方法及步骤 2.2 代码详解 3.总结 前言 一周没有更新博客了,这一周的时间内加强了对机器学习和图像处理的学习.学的有点混乱,有必要记录一下. 深度学习可以解决很多问题,但有时候深度学习和图像处理相结合才能有更好的效果:比如,在进行交通信号灯检测时,用目标检测模型确定信号灯位置后,对信号灯进行颜色分割再识别可大大提高准确率. 机器学习领域中有句话:数据和特征决定了模型的上限,而算法只不过是逼近这个上限而已,所以

  • python数字图像处理之图像自动阈值分割示例

    目录 引言 1.threshold_otsu 2.threshold_yen 3.threshold_li 4.threshold_isodata 5.threshold_adaptive 引言 图像阈值分割是一种广泛应用的分割技术,利用图像中要提取的目标区域与其背景在灰度特性上的差异,把图像看作具有不同灰度级的两类区域(目标区域和背景区域)的组合,选取一个比较合理的阈值,以确定图像中每个像素点应该属于目标区域还是背景区域,从而产生相应的二值图像. 在skimage库中,阈值分割的功能是放在fi

  • Python+opencv 实现图片文字的分割的方法示例

    实现步骤: 1.通过水平投影对图形进行水平分割,获取每一行的图像: 2.通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符: 先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 下面通过Python+opencv来实现该功能 首先来实现水平投影: import cv2 impor

随机推荐