python用插值法绘制平滑曲线
本文实例为大家分享了python用插值法绘制平滑曲线的具体代码,供大家参考,具体内容如下
原图:
平滑处理后:
代码实现如下:
# 1. 随机构造数据 import numpy as np x = range(10) y = np.random.randint(10,size=10) # 2. 绘制原图 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # jupyter notebook显示绘图 from scipy.interpolate import spline # 借助scipy库 plt.plot(x, y) plt.show() # 3. 绘制平滑曲线 from scipy.interpolate import spline # 插值法,50表示插值个数,个数>=实际数据个数,一般来说差值个数越多,曲线越平滑 x_new = np.linspace(min(x),max(x),50) y_smooth = spline(x, y, x_new) plt.plot(x_new, y_smooth) plt.show()
以上经过平滑后的曲线可能和原图差距很大,这个主要看数据本身的规律性。如果数据本身比较杂乱无章,如下:
则平滑后为:
平滑后曲线和原图还是差得很远的,因此该方法慎用,不是万能的。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
python使用插值法画出平滑曲线
本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下 实现所需的库 numpy.scipy.matplotlib 实现所需的方法 插值 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 拟合和插值的区别 简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点
-
python利用插值法对折线进行平滑曲线处理
在用python绘图的时候,经常由于数据的原因导致画出来的图折线分界过于明显,因此需要对原数据绘制的折线进行平滑处理,本文介绍利用插值法进行平滑曲线处理: 实现所需的库 numpy.scipy.matplotlib 插值法实现 nearest:最邻近插值法 zero:阶梯插值 slinear:线性插值 quadratic.cubic:2.3阶B样条曲线插值 - 拟合和插值的区别 1.插值:简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点. 2拟合:拟合是通过原有数据,调整曲线系
-
python用插值法绘制平滑曲线
本文实例为大家分享了python用插值法绘制平滑曲线的具体代码,供大家参考,具体内容如下 原图: 平滑处理后: 代码实现如下: # 1. 随机构造数据 import numpy as np x = range(10) y = np.random.randint(10,size=10) # 2. 绘制原图 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # jupyter notebook显示绘
-
python使用PyGame绘制图像并保存为图片文件的方法
本文实例讲述了python使用PyGame绘制图像并保存为图片文件的方法.分享给大家供大家参考.具体实现方法如下: ''' pg_draw_circle_save101.py draw a blue solid circle on a white background save the drawing to an image file for result see http://prntscr.com/156wxi tested with Python 2.7 and PyGame 1.9.2
-
Python和Perl绘制中国北京跑步地图的方法
当你在一个城市,穿越大街小巷,跑步跑了几千公里之后,一个显而易见的想法是,我到底和之前比快了多少,跑量有何变化,如果能把在这个城市的所有路线全部画出来,会是怎样的景象呢? 1.数据来源:益动GPS 文章代码比较多,为了不吊人胃口,先看看最终效果: [/code] 首先需要有原始数据信息,手机上众多跑步软件提供了详细的记录,但它们共同的问题是不允许自由导入导出(可能是为了用户粘性吧).因此有一块智能运动手表应该是不二之选.我的是Garmin Fenix3,推荐一下: 益动GPS算是业界良心了,能够
-
Python使用matplotlib绘制动画的方法
本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =
-
python使用matplotlib绘制柱状图教程
Matplotlib的概念这里就不多介绍了,关于绘图库Matplotlib的安装方法:点击这里 小编之前也和大家分享过python使用matplotlib实现的折线图和制饼图效果,感兴趣的朋友们也可以点击查看,下面来看看python使用matplotlib绘制柱状图的方法吧,具体如下: 1. 基本的柱状图 import matplotlib.pyplot as plt data = [5, 20, 15, 25, 10] plt.bar(range(len(data)), data) plt.s
-
Python基于matplotlib绘制栈式直方图的方法示例
本文实例讲述了Python基于matplotlib绘制栈式直方图的方法.分享给大家供大家参考,具体如下: 平时我们只对一组数据做直方图统计,这样我们只要直接画直方图就可以了. 但有时候我们同时画多组数据的直方图(比如说我大一到大四跑大学城内环的用时的分布),大一到大四用不同颜色的直方图,显示在一张图上,这样会很直观. #!/usr/bin/env python # -*- coding: utf-8 -*- #http://www.jb51.net/article/100363.htm # nu
-
Python中pygal绘制雷达图代码分享
pygal的安装和简介,大家可以参阅<pip和pygal的安装实例教程>,下面看看通过pygal实现绘制雷达图代码示例. 雷达图(Radar): import pygal radar_chart = pygal.Radar() radar_chart.title = 'V8 benchmark results' radar_chart.x_labels = ['Richards', 'DeltaBlue', 'Crypto', 'RayTrace', 'EarleyBoyer', 'RegEx
-
Python通过matplotlib绘制动画简单实例
Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形. 通过Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等. matplotlib从1.1.0版本以后就开始支持绘制动画,具体使用可以参考官方帮助文档.下面是一个很基本的例子: """ A simple example of an animated plot """ import n
随机推荐
- 详解在Vue中通过自定义指令获取dom元素
- AngularJS基础 ng-init 指令简单示例
- Android裁剪图片为圆形图片的实现原理与代码
- 浅谈java中Map的用法
- python实现给字典添加条目的方法
- js用类封装pop弹窗组件
- php daodb插入、更新与删除数据
- JavaScript数据类型详解
- MySQL交换分区的实例详解
- nodeJS实现路由功能实例代码
- JS实现DIV高度自适应窗口示例
- Easyui form combobox省市区三级联动
- 浅谈MySQL排序原理与案例分析
- Nginx could not build the server_names_hash 错误的解决办法
- SQL语句查询是否为空 =null及null
- SQL2000 全文索引完全图解
- jQuery textarea的长度进行验证
- PHP中使用微秒计算脚本执行时间例子
- JavaScrpt的面向对象全面解析
- 显示在线人数