Python基于聚类算法实现密度聚类(DBSCAN)计算【测试可用】

本文实例讲述了Python基于聚类算法实现密度聚类(DBSCAN)计算。分享给大家供大家参考,具体如下:

算法思想

基于密度的聚类算法从样本密度的角度考察样本之间的可连接性,并基于可连接样本不断扩展聚类簇得到最终结果。

几个必要概念:

ε-邻域:对于样本集中的xj, 它的ε-邻域为样本集中与它距离小于ε的样本所构成的集合。
核心对象:若xj的ε-邻域中至少包含MinPts个样本,则xj为一个核心对象。
密度直达:若xj位于xi的ε-邻域中,且xi为核心对象,则xj由xi密度直达。
密度可达:若样本序列p1, p2, ……, pn。pi+1由pi密度直达,则p1由pn密度可达。

大致思想如下:

1. 初始化核心对象集合T为空,遍历一遍样本集D中所有的样本,计算每个样本点的ε-邻域中包含样本的个数,如果个数大于等于MinPts,则将该样本点加入到核心对象集合中。初始化聚类簇数k = 0, 初始化未访问样本集和为P = D。

2. 当T集合中存在样本时执行如下步骤:

  • 2.1记录当前未访问集合P_old = P
  • 2.2从T中随机选一个核心对象o,初始化一个队列Q = [o]
  • 2.3P = P-o(从T中删除o)
  • 2.4当Q中存在样本时执行:
  • 2.4.1取出队列中的首个样本q
  • 2.4.2计算q的ε-邻域中包含样本的个数,如果大于等于MinPts,则令S为q的ε-邻域与P的交集,

    Q = Q+S, P = P-S
  • 2.5 k = k + 1,生成聚类簇为Ck = P_old - P
  • 2.6 T = T - Ck

3. 划分为C= {C1, C2, ……, Ck}

Python代码实现

#-*- coding:utf-8 -*-
import math
import numpy as np
import pylab as pl
 #数据集:每三个是一组分别是西瓜的编号,密度,含糖量
data = """
1,0.697,0.46,2,0.774,0.376,3,0.634,0.264,4,0.608,0.318,5,0.556,0.215,
6,0.403,0.237,7,0.481,0.149,8,0.437,0.211,9,0.666,0.091,10,0.243,0.267,
11,0.245,0.057,12,0.343,0.099,13,0.639,0.161,14,0.657,0.198,15,0.36,0.37,
16,0.593,0.042,17,0.719,0.103,18,0.359,0.188,19,0.339,0.241,20,0.282,0.257,
21,0.748,0.232,22,0.714,0.346,23,0.483,0.312,24,0.478,0.437,25,0.525,0.369,
26,0.751,0.489,27,0.532,0.472,28,0.473,0.376,29,0.725,0.445,30,0.446,0.459"""
#数据处理 dataset是30个样本(密度,含糖量)的列表
a = data.split(',')
dataset = [(float(a[i]), float(a[i+1])) for i in range(1, len(a)-1, 3)]
#计算欧几里得距离,a,b分别为两个元组
def dist(a, b):
  return math.sqrt(math.pow(a[0]-b[0], 2)+math.pow(a[1]-b[1], 2))
#算法模型
def DBSCAN(D, e, Minpts):
  #初始化核心对象集合T,聚类个数k,聚类集合C, 未访问集合P,
  T = set(); k = 0; C = []; P = set(D)
  for d in D:
    if len([ i for i in D if dist(d, i) <= e]) >= Minpts:
      T.add(d)
  #开始聚类
  while len(T):
    P_old = P
    o = list(T)[np.random.randint(0, len(T))]
    P = P - set(o)
    Q = []; Q.append(o)
    while len(Q):
      q = Q[0]
      Nq = [i for i in D if dist(q, i) <= e]
      if len(Nq) >= Minpts:
        S = P & set(Nq)
        Q += (list(S))
        P = P - S
      Q.remove(q)
    k += 1
    Ck = list(P_old - P)
    T = T - set(Ck)
    C.append(Ck)
  return C
#画图
def draw(C):
  colValue = ['r', 'y', 'g', 'b', 'c', 'k', 'm']
  for i in range(len(C)):
    coo_X = []  #x坐标列表
    coo_Y = []  #y坐标列表
    for j in range(len(C[i])):
      coo_X.append(C[i][j][0])
      coo_Y.append(C[i][j][1])
    pl.scatter(coo_X, coo_Y, marker='x', color=colValue[i%len(colValue)], label=i)
  pl.legend(loc='upper right')
  pl.show()
C = DBSCAN(dataset, 0.11, 5)
draw(C)

本机测试运行结果图:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python实现数据预处理之填充缺失值的示例

    1.给定一个数据集noise-data-1.txt,该数据集中保护大量的缺失值(空格.不完整值等).利用"全局常量"."均值或者中位数"来填充缺失值. noise-data-1.txt: 5.1 3.5 1.4 0.2 4.9 3 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5 3.6 1.4 0.2 5.4 3.9 1.7 0.4 4.6 3.4 1.4 0.3 5 3.4 1.5 0.2 4.4 2.9 1.4 0.2 4.9

  • Python实现的逻辑回归算法示例【附测试csv文件下载】

    本文实例讲述了Python实现的逻辑回归算法.分享给大家供大家参考,具体如下: 使用python实现逻辑回归 Using Python to Implement Logistic Regression Algorithm 菜鸟写的逻辑回归,记录一下学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/10 Project: Using Python to Implement Logisti

  • Python机器学习之scikit-learn库中KNN算法的封装与使用方法

    本文实例讲述了Python机器学习之scikit-learn库中KNN算法的封装与使用方法.分享给大家供大家参考,具体如下: 1.工具准备,python环境,pycharm 2.在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型.当然这里必须将训练数据和训练标签进行拟合才能形成模型. 3.在pycharm中创建新的项目工程,并在项目下新建KNN.py文件. import numpy as np from math import s

  • python 递归深度优先搜索与广度优先搜索算法模拟实现

     一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果 (3)案例分析:求1+2+3+...+n的数和 # 概述 ''' 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! ''' # 写递归的过程 ''' 1.写出临界条件 2.找出这一次和上一次关系 3.假设

  • Python实现的各种常见分布算法示例

    本文实例讲述了Python实现的各种常见分布算法.分享给大家供大家参考,具体如下: #-*- encoding:utf-8 -*- import numpy as np from scipy import stats import matplotlib.pyplot as plt ##################### #二项分布 ##################### def test_binom_pmf(): ''' 为离散分布 二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率

  • 对python数据切割归并算法的实例讲解

    当一个 .txt 文件的数据过于庞大,此时想要对数据进行排序就需要先将数据进行切割,然后通过归并排序,最终实现对整体数据的排序.要实现这个过程我们需要进行以下几步:获取总数据行数:根据行数按照自己的需要对数据进行切割:对每组数据进行排序 最后对所有数据进行归并排序. 下面我们就来实现这整个过程: 一:获取总数据的行 def get_file_lines(file_path): # 目标文件的路径 file_path = str(file_path) with open(file_path, 'r

  • Python实现的线性回归算法示例【附csv文件下载】

    本文实例讲述了Python实现的线性回归算法.分享给大家供大家参考,具体如下: 用python实现线性回归 Using Python to Implement Line Regression Algorithm 小菜鸟记录学习过程 代码: #encoding:utf-8 """ Author: njulpy Version: 1.0 Data: 2018/04/09 Project: Using Python to Implement LineRegression Algor

  • python数据预处理之将类别数据转换为数值的方法

    在进行python数据分析的时候,首先要进行数据预处理. 有时候不得不处理一些非数值类别的数据,嗯, 今天要说的就是面对这些数据该如何处理. 目前了解到的大概有三种方法: 1,通过LabelEncoder来进行快速的转换: 2,通过mapping方式,将类别映射为数值.不过这种方法适用范围有限: 3,通过get_dummies方法来转换. import pandas as pd from io import StringIO csv_data = '''A,B,C,D 1,2,3,4 5,6,,

  • python实现朴素贝叶斯算法

    本代码实现了朴素贝叶斯分类器(假设了条件独立的版本),常用于垃圾邮件分类,进行了拉普拉斯平滑. 关于朴素贝叶斯算法原理可以参考博客中原理部分的博文. #!/usr/bin/python # -*- coding: utf-8 -*- from math import log from numpy import* import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def

  • Python实现的拉格朗日插值法示例

    本文实例讲述了Python实现的拉格朗日插值法.分享给大家供大家参考,具体如下: 拉格朗日插值简单介绍 拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法. 许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解.在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个简单函数,其恰好在各个现测的点取到观测到的值,这个函数可以是代数多项式,三角多项式等. 完整Python示例: # -*- coding:utf-8 -*- #拉格朗日

  • Python实现Dijkstra算法

    Dijkstra算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 迪杰斯特拉算法是求从某一个起点到其余所有结点的最短路径,是一对多的映射关系,是一种贪婪算法 示例: 算法 算法实现流程思路: 迪杰斯特拉算法每次只找离起点最近的一个结点,并将之并入已经访问过结点的集合(以防重复访问,陷入死循环),然后将刚找到的

  • Python数据预处理之数据规范化(归一化)示例

    本文实例讲述了Python数据预处理之数据规范化.分享给大家供大家参考,具体如下: 数据规范化 为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析. 数据规范化方法主要有: - 最小-最大规范化 - 零-均值规范化 数据示例 代码实现 #-*- coding: utf-8 -*- #数据规范化 import pandas as pd import numpy as np datafile = 'normali

随机推荐