Python的numpy库中将矩阵转换为列表等函数的方法

这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找。

(1)将矩阵转换为列表的函数:numpy.matrix.tolist()

返回list列表

Examples

>>>

>>> x = np.matrix(np.arange(12).reshape((3,4))); x
matrix([[ 0, 1, 2, 3],
  [ 4, 5, 6, 7],
  [ 8, 9, 10, 11]])
>>> x.tolist()
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

(2)将数组转换为列表的函数:numpy.ndarray.tolist()

Notes:(数组能够被重新构造)

The array may be recreated, a=np.array(a.tolist()).

Examples

>>>

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

(3)numpy.mean()计算矩阵或数组的均值:

Examples

>>>

>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求均值
>>> np.mean(a)
2.5
>>> np.mean(a, axis=0) #对每一列求均值
array([ 2., 3.])
>>> np.mean(a, axis=1) #对每一行求均值
array([ 1.5, 3.5])

(4)numpy.std()计算矩阵或数组的标准差:

Examples

>>>

>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求标准差
>>> np.std(a)
1.1180339887498949
>>> np.std(a, axis=0) #对每一列求标准差
array([ 1., 1.])
>>> np.std(a, axis=1) #对每一行求标准差
array([ 0.5, 0.5])

(5)numpy.newaxis为数组增加一个维度:

Examples:

>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) #先输入3行2列的数组a
>>> b=a[:,:2]
>>> b.shape #当数组的行与列都大于1时,不需增加维度
(3, 2)
>>> c=a[:,2]
>>> c.shape #可以看到,当数组只有一列时,缺少列的维度
(3,)
>>> c
array([3, 6, 9])
>>> d=a[:,2,np.newaxis] #np.newaxis实现增加列的维度
>>> d
array([[3],
  [6],
  [9]])
>>> d.shape  #d的维度成了3行1列(3,1)
(3, 1)
>>> e=a[:,2,None] #None与np.newaxis实现相同的功能
>>> e
array([[3],
  [6],
  [9]])
>>> e.shape
(3, 1)

(6)numpy.random.shuffle(index): 打乱数据集(数组)的顺序:

Examples:

>>> index = [i for i in range(10)]
>>> index
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> np.random.shuffle(index)
>>> index
[7, 9, 3, 0, 4, 1, 5, 2, 8, 6] 

(7)计算二维数组某一行或某一列的最大值最小值:

>>> import numpy as np
>>> a = np.arange(15).reshape(5,3) #构造一个5行3列的二维数组
>>> a
array([[ 0, 1, 2],
  [ 3, 4, 5],
  [ 6, 7, 8],
  [ 9, 10, 11],
  [12, 13, 14]])
>>> b = a[:,0].min() ##取第0列的最小值,其他列同理
>>> b
0
>>> c = a[0,:].max() ##取第0行的最大值,其他行同理
>>> c
2 

(8)向数组中添加列:np.hstack()

n = np.array(np.random.randn(4,2)) 

n
Out[153]:
array([[ 0.17234 , -0.01480043],
  [-0.33356669, -1.33565616],
  [-1.11680009, 0.64230761],
  [-0.51233174, -0.10359941]]) 

l = np.array([1,2,3,4]) 

l
Out[155]: array([1, 2, 3, 4]) 

l.shape
Out[156]: (4,) 

可以看到,n是二维的,l是一维的,如果直接调用np.hstack()会出错:维度不同。

n = np.hstack((n,l))
ValueError: all the input arrays must have same number of dimensions 

解决方法是将l变为二维的,可以用(5)中的方法:

n = np.hstack((n,l[:,np.newaxis])) ##注意:在使用np.hstack()时必须用()把变量括起来,因为它只接受一个变量 

n
Out[161]:
array([[ 0.17234 , -0.01480043, 1.  ],
  [-0.33356669, -1.33565616, 2.  ],
  [-1.11680009, 0.64230761, 3.  ],
  [-0.51233174, -0.10359941, 4.  ]]) 

下面讲一下如何按列往一个空列表添加值:

n = np.array([[1,2,3,4,5,6],[11,22,33,44,55,66],[111,222,333,444,555,666]]) ##产生一个三行六列容易区分的数组 

n
Out[166]:
array([[ 1, 2, 3, 4, 5, 6],
  [ 11, 22, 33, 44, 55, 66],
  [111, 222, 333, 444, 555, 666]]) 

sample = [[]for i in range(3)] ##产生三行一列的空列表
Out[172]: [[], [], []]
for i in range(0,6,2): ##每间隔一列便添加到sample中
 sample = np.hstack((sample,n[:,i,np.newaxis]))  

sample
Out[170]:
array([[ 1., 3., 5.],
  [ 11., 33., 55.],
  [ 111., 333., 555.]]) 

持续更新中……

以上这篇Python的numpy库中将矩阵转换为列表等函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • 基于Python Numpy的数组array和矩阵matrix详解
  • python增加矩阵维度的实例讲解
(0)

相关推荐

  • 基于Python Numpy的数组array和矩阵matrix详解

    NumPy的主要对象是同种元素的多维数组.这是一个所有的元素都是一种类型.通过一个正整数元组索引的元素表格(通常是元素是数字). 在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank,但是和线性代数中的秩不是一样的,在用python求线代中的秩中,我们用numpy包中的linalg.matrix_rank方法计算矩阵的秩,例子如下). 结果是: 线性代数中秩的定义:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那末D称为矩阵

  • python增加矩阵维度的实例讲解

    numpy.expand_dims(a, axis) Examples >>> x = np.array([1,2]) >>> x.shape (2,) >>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2) >>> y = np.expand_dims(x, axis=1) # Equivalent to

  • Python的numpy库中将矩阵转换为列表等函数的方法

    这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找. (1)将矩阵转换为列表的函数:numpy.matrix.tolist() 返回list列表 Examples >>> >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2

  • Python使用numpy模块实现矩阵和列表的连接操作方法

    Numpy模块被广泛用于科学和数值计算,自然有它的强大之处,之前对于特征处理中需要进行数据列表或者矩阵拼接的时候都是自己写的函数来完成的,今天发现一个好玩的函数,不仅好玩,关键性能强大,那就是Numpy模块自带的矩阵.列表连接函数,实践一下. #!usr/bin/env python #encoding:utf-8 from __future__ import division ''' __Author__:沂水寒城 使用numpy模块实现矩阵的连接操作 ''' import numpy as

  • Python的numpy库下的几个小函数的用法(小结)

    numpy库是Python进行数据分析和矩阵运算的一个非常重要的库,可以说numpy让Python有了matlab的味道 本文主要介绍几个numpy库下的小函数. 1.mat函数 mat函数可以将目标数据的类型转换为矩阵(matrix) import numpy as np >>a=[[1,2,3,], [3,2,1]] >>type(a) >>list >>myMat=np.mat(a) >>myMat >>matrix([[1,2

  • python通过apply使用元祖和列表调用函数实例

    本文实例讲述了python通过apply使用元祖和列表调用函数的方法.分享给大家供大家参考.具体实现方法如下: def my_fuc(a, b): print a, b atuple=(30,10) alist= ['Hello','World!'] apply(my_fuc,atuple) apply(my_fuc,alist) 运行结果如下: 30 10 Hello World! 希望本文所述对大家的Python程序设计有所帮助.

  • python 的numpy库中的mean()函数用法介绍

    1. mean() 函数定义: numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source] Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over

  • python数据分析Numpy库的常用操作

    numpy库的引入: import numpy as np 1.numpy对象基础属性的查询 lst = [[1, 2, 3], [4, 5, 6]] def numpy_type(): print(type(lst)) data = np.array(lst, dtype=np.float64) # array将数组转为numpy的数组 # bool,int,int8,int16,int32,int64,int128,uint8,uint32, # uint64,uint128,float16

  • Python 把序列转换为元组的函数tuple方法

    tuple函数功能和list功能很相似,以序列为参数并把它转换为元组 >>> tuple([1,2,3]) (1, 2, 3) >>> tuple('abcd') ('a', 'b', 'c', 'd') 以上这篇Python 把序列转换为元组的函数tuple方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • numpy库ndarray多维数组的维度变换方法(reshape、resize、swapaxes、flatten)

    numpy库对多维数组有非常灵巧的处理方式,主要的处理方法有: .reshape(shape) : 不改变数组元素,返回一个shape形状的数组,原数组不变 .resize(shape) : 与.reshape()功能一致,但修改原数组 In [22]: a = np.arange(20) #原数组不变 In [23]: a.reshape([4,5]) Out[23]: array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14

  • Python使用psutil库对系统数据进行采集监控的方法

    大家好,我是辰哥- 今天给大家介绍一个可以获取当前系统信息的库--psutil 利用psutil库可以获取系统的一些信息,如cpu,内存等使用率,从而可以查看当前系统的使用情况,实时采集这些信息可以达到实时监控系统的目的. psutil库 psutil的安装很简单 pip install psutil psutil库可以获取哪些系统信息? psutil有哪些作用 1.内存使用情况 2.磁盘使用情况 3.cpu使用率 4.网络接口发送接收流量 5.获取当前网速 6.系统当前进程 ... 下面通过具

  • Python列表append()函数使用方法详解

    目录 1. 基本使用 2. 任意类型元素 3. 列表同步 3.1 原理剖析 3.2 解决方案 4. append()与extend()的区别 总结 1. 基本使用 append() 函数可以向列表末尾添加元素 语法 list.append( element ) 参数 element:任何类型的元素 实例:向列表末尾添加一个元素 name_list = ['zhangsan', 'lisi', 'wangwu'] name_list.append('zhaoliu') print(name_lis

随机推荐