详解Python并发编程之从性能角度来初探并发编程

. 前言

作为进阶系列的一个分支「并发编程」,我觉得这是每个程序员都应该会的。

并发编程 这个系列,我准备了将近一个星期,从知识点梳理,到思考要举哪些例子才能更加让人容易吃透这些知识点。希望呈现出来的效果真能如想象中的那样,对小白也一样的友好。

昨天大致整理了下,这个系列我大概会讲如下内容(后期可能调整):

对于并发编程,Python的实现,总结了一下,大致有如下三种方法:

  • 多线程
  • 多进程
  • 协程(生成器)

在之后的章节里,将陆陆续续地给大家介绍到这三个知识点。

. 并发编程的基本概念

在开始讲解理论知识之前,先过一下几个基本概念。虽然咱是进阶教程,但我也希望写得更小白,更通俗易懂。

  • 串行:一个人在同一时间段只能干一件事,譬如吃完饭才能看电视;
  • 并行:一个人在同一时间段可以干多件事,譬如可以边吃饭边看电视;

在Python中,多线程 和 协程 虽然是严格上来说是串行,但却比一般的串行程序执行效率高得很。一般的串行程序,在程序阻塞的时候,只能干等着,不能去做其他事。就好像,电视上播完正剧,进入广告时间,我们却不能去趁广告时间是吃个饭。对于程序来说,这样做显然是效率极低的,是不合理的。

当然,学完这个课程后,我们就懂得,利用广告时间去做其他事,灵活安排时间。这也是我们多线程和协程 要帮我们要完成的事情,内部合理调度任务,使得程序效率最大化。

虽然 多线程 和 协程 已经相当智能了。但还是不够高效,最高效的应该是一心多用,边看电视边吃饭边聊天。这就是我们的 多进程 才能做的事了。

为了更帮助大家更加直观的理解,在网上找到两张图,来生动形象的解释了多线程和多进程的区别。(侵删)

多线程,交替执行,另一种意义上的串行。

多进程,并行执行,真正意义上的并发。

. 单线程VS多线程VS多进程

文字总是苍白无力的,千言万语不如几行代码来得孔武有力。

首先,我的实验环境配置如下

操作系统 CPU核数 内存(G) 硬盘
CentOS 7.2 24核 32 机械硬盘

注意以下代码,若要理解,对小白有如下知识点要求:

  • 装饰器的运用
  • 多线程的基本使用
  • 多进程的基本使用

当然,看不懂也没关系,主要最后的结论,能让大家对单线程、多线程、多进程在实现效果上有个大体清晰的认识,达到这个效果,本文的使命也就完成了,等到最后,学完整个系列,不妨再回头来理解也许会有更深刻的理解。

下面我们来看看,单线程,多线程和多进程,在运行中究竟孰强孰弱。

开始对比之前,首先定义四种类型的场景

  • CPU计算密集型
  • 磁盘IO密集型
  • 网络IO密集型
  • 【模拟】IO密集型

为什么是这几种场景,这和多线程 多进程的适用场景有关。结论里,我再说明。

# CPU计算密集型
def count(x=1, y=1):
  # 使程序完成150万计算
  c = 0
  while c < 500000:
    c += 1
    x += x
    y += y

# 磁盘读写IO密集型
def io_disk():
  with open("file.txt", "w") as f:
    for x in range(5000000):
      f.write("python-learning\n")

# 网络IO密集型
header = {
  'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.139 Safari/537.36'}
url = "https://www.tieba.com/"

def io_request():
  try:
    webPage = requests.get(url, headers=header)
    html = webPage.text
    return
  except Exception as e:
    return {"error": e}

# 【模拟】IO密集型
def io_simulation():
  time.sleep(2)

比拼的指标,我们用时间来考量。时间耗费得越少,说明效率越高。

为了方便,使得代码看起来,更加简洁,我这里先定义是一个简单的 时间计时器 的装饰器。如果你对装饰器还不是很了解,也没关系,你只要知道它是用于 计算函数运行时间的东西就可以了。

def timer(mode):
  def wrapper(func):
    def deco(*args, **kw):
      type = kw.setdefault('type', None)
      t1=time.time()
      func(*args, **kw)
      t2=time.time()
      cost_time = t2-t1
      print("{}-{}花费时间:{}秒".format(mode, type,cost_time))
    return deco
  return wrapper

第一步,先来看看单线程的

@timer("【单线程】")
def single_thread(func, type=""):
  for i in range(10):
       func()

# 单线程
single_thread(count, type="CPU计算密集型")
single_thread(io_disk, type="磁盘IO密集型")
single_thread(io_request,type="网络IO密集型")
single_thread(io_simulation,type="模拟IO密集型")

看看结果

【单线程】-CPU计算密集型花费时间:83.42633867263794秒
【单线程】-磁盘IO密集型花费时间:15.641993284225464秒
【单线程】-网络IO密集型花费时间:1.1397218704223633秒
【单线程】-模拟IO密集型花费时间:20.020972728729248秒

第二步,再来看看多线程的

@timer("【多线程】")
def multi_thread(func, type=""):
  thread_list = []
  for i in range(10):
    t=Thread(target=func, args=())
    thread_list.append(t)
    t.start()
  e = len(thread_list)

  while True:
    for th in thread_list:
      if not th.is_alive():
        e -= 1
    if e <= 0:
      break

# 多线程
multi_thread(count, type="CPU计算密集型")
multi_thread(io_disk, type="磁盘IO密集型")
multi_thread(io_request, type="网络IO密集型")
multi_thread(io_simulation, type="模拟IO密集型")

看看结果

【多线程】-CPU计算密集型花费时间:93.82986998558044秒
【多线程】-磁盘IO密集型花费时间:13.270896911621094秒
【多线程】-网络IO密集型花费时间:0.1828296184539795秒
【多线程】-模拟IO密集型花费时间:2.0288875102996826秒

第三步,最后来看看多进程

@timer("【多进程】")
def multi_process(func, type=""):
  process_list = []
  for x in range(10):
    p = Process(target=func, args=())
    process_list.append(p)
    p.start()
  e = process_list.__len__()

  while True:
    for pr in process_list:
      if not pr.is_alive():
        e -= 1
    if e <= 0:
      break

# 多进程
multi_process(count, type="CPU计算密集型")
multi_process(io_disk, type="磁盘IO密集型")
multi_process(io_request, type="网络IO密集型")
multi_process(io_simulation, type="模拟IO密集型")

看看结果

【多进程】-CPU计算密集型花费时间:9.082211017608643秒
【多进程】-磁盘IO密集型花费时间:1.287339448928833秒
【多进程】-网络IO密集型花费时间:0.13074755668640137秒
【多进程】-模拟IO密集型花费时间:2.0076842308044434秒

. 性能对比成果总结

将结果汇总一下,制成表格。

种类 CPU
计算密集型
磁盘
IO密集型
网络
IO密集型
模拟
IO密集型
单线程 83.42 15.64 1.13 20.02
多线程 93.82 13.27 0.18 2.02
多进程 9.08 1.28 0.13 2.01

我们来分析下这个表格。

首先是CPU密集型,多线程以对比单线程,不仅没有优势,显然还由于要不断的加锁释放GIL全局锁,切换线程而耗费大量时间,效率低下,而多进程,由于是多个CPU同时进行计算工作,相当于十个人做一个人的作业,显然效率是成倍增长的。

然后是IO密集型,IO密集型可以是磁盘IO,网络IO,数据库IO等,都属于同一类,计算量很小,主要是IO等待时间的浪费。通过观察,可以发现,我们磁盘IO,网络IO的数据,多线程对比单线程也没体现出很大的优势来。这是由于我们程序的的IO任务不够繁重,所以优势不够明显。

所以我还加了一个「模拟IO密集型」,用sleep来模拟IO等待时间,就是为了体现出多线程的优势,也能让大家更加直观的理解多线程的工作过程。单线程需要每个线程都要sleep(2),10个线程就是20s,而多线程,在sleep(2)的时候,会切换到其他线程,使得10个线程同时sleep(2),最终10个线程也就只有2s.

可以得出以下几点结论

  • 单线程总是最慢的,多进程总是最快的。
  • 多线程适合在IO密集场景下使用,譬如爬虫,网站开发等
  • 多进程适合在对CPU计算运算要求较高的场景下使用,譬如大数据分析,机器学习等
  • 多进程虽然总是最快的,但是不一定是最优的选择,因为它需要CPU资源支持下才能体现优势

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • Python多进程并发与多线程并发编程实例总结

    本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级

  • python 并发编程 多路复用IO模型详解

    多路复用IO(IO multiplexing) 这种IO方式为事件驱动IO(event driven IO). 我们都知道,select/epoll的好处就在于单个进程process就可以同时处理多个网络连接的IO.它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程.它的流程如图: select是多路复用的一种 当用户进程调用了select,那么整个进程会被block,而同时,kernel会"监视&qu

  • python 并发编程 非阻塞IO模型原理解析

    非阻塞IO(non-blocking IO) Linux下,可以通过设置socket使其变为non-blocking.当对一个non-blocking socket执行读操作时,流程是这个样子: 从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error.从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果.用户进程判断结果是一个error时,它就知道数据还没有准备好,于是用户就可

  • python 并发编程 阻塞IO模型原理解析

    阻塞IO(blocking IO) 在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样: 当用户进程调用了recvfrom这个系统调用,kernel内核就开始了IO的第一个阶段:准备数据.对于network io( 网络io )来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel( 内核 )就要等待足够的数据到来. 等着对方把数据放到自己操作系统内存 而在用户进程这边,整个进程会被阻塞.当kernel一直等

  • 简单介绍Python中利用生成器实现的并发编程

    我们都知道并发(不是并行)编程目前有四种方式,多进程,多线程,异步,和协程. 多进程编程在python中有类似C的os.fork,当然还有更高层封装的multiprocessing标准库,在之前写过的python高可用程序设计方法中提供了类似nginx中master process和worker process间信号处理的方式,保证了业务进程的退出可以被主进程感知. 多线程编程python中有Thread和threading,在linux下所谓的线程,实际上是LWP轻量级进程,其在内核中具有和进

  • python并发编程多进程 模拟抢票实现过程

    抢票是并发执行 多个进程可以访问同一个文件 多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务 db.txt {"count": 1} 并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人 #文件db.txt的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 from multiprocessing import Process import time import json cla

  • python并发编程之线程实例解析

    常用用法 t.is_alive() Python中线程会在一个单独的系统级别线程中执行(比如一个POSIX线程或者一个Windows线程) 这些线程将由操作系统来全权管理.线程一旦启动,将独立执行直到目标函数返回.可以通过查询 一个线程对象的状态,看它是否还在执行t.is_alive() t.join() 可以把一个线程加入到当前线程,并等待它终止 Python解释器在所有线程都终止后才继续执行代码剩余的部分 daemon 对于需要长时间运行的线程或者需要一直运行的后台任务,可以用后台线程(也称

  • 理论讲解python多进程并发编程

    一.什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 二.进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三.并发与并行 并发与并行是指cpu运行多个程序的方式 不管是并行与并发,在用户看起来都是'同时'运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务. 并行就相当于有好多台设备,可以同时供好多人使用. 而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人. 所以只有多个cpu才能实现并行,而一个c

  • python并发编程多进程之守护进程原理解析

    守护进程 主进程创建子进程目的是:主进程有一个任务需要并发执行,那开启子进程帮我并发执行任务 主进程创建子进程,然后将该进程设置成守护自己的进程 关于守护进程需要强调两点: 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children 如果我们有两个任务需要并发执行,那么开一个主进程和一个子进程分别去执行就ok了,如果子进程的任务

  • 一文了解Python并发编程的工程实现方法

    上一篇文章介绍了线程的使用.然而 Python 中由于 Global Interpreter Lock (全局解释锁 GIL )的存在,每个线程在在执行时需要获取到这个 GIL ,在同一时刻中只有一个线程得到解释锁的执行, Python 中的线程并没有真正意义上的并发执行,多线程的执行效率也不一定比单线程的效率更高. 如果要充分利用现代多核 CPU 的并发能力,就要使用 multipleprocessing 模块了. 0x01 multipleprocessing 与使用线程的 threadin

  • python并发编程多进程 互斥锁原理解析

    运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端, 是可以的,而共享带来的是竞争,竞争带来的结果就是错乱 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import time def task(name): print("%s 1" % name) time.

随机推荐