对python的bytes类型数据split分割切片方法

对str类型数据进行split操作如下:

>>> s = 'abc\ndef'
>>> s.split('\n')
['abc', 'def']

对bytes类型数据进行split操作如下:

>>> b = b'abc\ndef'
>>> b.split(b'\n')
[b'abc', b'def']

测试Python版本:3.6.5

以上这篇对python的bytes类型数据split分割切片方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python 处理数据的实例详解

    Python 处理数据的实例详解 最近用python(3.2的版本)写了根据特定规则,处理数据的一个小程序,用到了一些python常用的基础知识,在此总结一下: 1,python读文件 2,python写文件 3,python的流程控制 4,python的for循环 5,python的集合,或字符串里判断是否存在某个元素 6,python的逻辑或,逻辑与 7,python的正则过滤 8,python的字符串忽略空格,和以某个字符串开头和按某个字符拆分成list python的打开文件的模式: 关

  • python使用pandas实现数据分割实例代码

    本文研究的主要是Python编程通过pandas将数据分割成时间跨度相等的数据块的相关内容,具体如下. 先上数据,有如下dataframe格式的数据,列名分别为date.ip,我需要统计每5s内出现的ip,以及这些ip出现的频数. ip date 0 127.0.0.21 15/Jul/2017:18:22:16 1 127.0.0.13 15/Jul/2017:18:22:16 2 127.0.0.11 15/Jul/2017:18:22:17 3 127.0.0.11 15/Jul/2017

  • Python字典数据对象拆分的简单实现方法

    本文实例讲述了Python字典数据对象拆分的简单实现方法.分享给大家供大家参考,具体如下: 有朋友问了下问题: {'A1;A2': 'B','A3': 'C'}这种数据结构要拆解成{'A1':'B', 'A2': 'B', 'A3': 'C'},要如何实现? 这种问题,如果用普通的for循环来实现的话,还是有点麻烦: >>> dct = {'A1;A2': 'B','A3': 'C'} >>> tmp = {} >>> for k,v in dct.i

  • Python数据集切分实例

    在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码. ''' data:数据集 test_ratio:测试机占比 如果data为numpy.numpy.ndarray直接使用此代码 如果data为pandas.DatFrame类型则 return data[train_indices],data[test_indices] 修改为 return data.iloc[train_indices],data.iloc[test_indices] ''' def split_tr

  • 对python的bytes类型数据split分割切片方法

    对str类型数据进行split操作如下: >>> s = 'abc\ndef' >>> s.split('\n') ['abc', 'def'] 对bytes类型数据进行split操作如下: >>> b = b'abc\ndef' >>> b.split(b'\n') [b'abc', b'def'] 测试Python版本:3.6.5 以上这篇对python的bytes类型数据split分割切片方法就是小编分享给大家的全部内容了,希望

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • 基于Python的Post请求数据爬取的方法详解

    为什么做这个 和同学聊天,他想爬取一个网站的post请求 观察 该网站的post请求参数有两种类型:(1)参数体放在了query中,即url拼接参数(2)body中要加入一个空的json对象,关于为什么要加入空的json对象,猜测原因为反爬虫.既有query参数又有空对象体的body参数是一件脑洞很大的事情. 一开始先在apizza网站 上了做了相关实验才发现上面这个规律的,并发现该网站的请求参数要为raw形式,要是直接写代码找规律不是一件容易的事情. 源码 import requests im

  • python 保存float类型的小数的位数方法

    python保留两位小数: In [1]: a = 5.026 In [2]: b = 5.000 In [3]: round(a,2) Out[3]: 5.03 In [4]: round(b,2) Out[4]: 5.0 In [5]: '%.2f' % a Out[5]: '5.03' In [6]: '%.2f' % b Out[6]: '5.00' In [7]: float('%.2f' % a) Out[7]: 5.03 In [8]: float('%.2f' % b) Out[

  • pycharm下查看python的变量类型和变量内容的方法

    用过Matlab的同学基本都知道,程序里面的变量内容可以很方便的查看到,但python确没这么方便,对于做数据处理的很不方便,其实不是没有这个功能,只是没有发现而已,今天整理一下供大家相互学习. 首先,在程序的某一处添加断点,点击行号右边部分红处,如下图所示: 添加断点后,选择debug程序,快捷键在pycharm的右上角. debug过程中,pycharm的下方工作区域内会相应显示: Variables窗口中的变量可以右击,Add to Watches,然后在Watches窗口中可以看到所选数

  • Python Pandas模块实现数据的统计分析的方法

    一.groupby函数 Python中的groupby函数,它主要的作用是进行数据的分组以及分组之后的组内的运算,也可以用来探索各组之间的关系,首先我们导入我们需要用到的模块 import pandas as pd 首先导入我们所需要用到的数据集 customer = pd.read_csv("Churn_Modelling.csv") marketing = pd.read_csv("DirectMarketing.csv") 我们先从一个简单的例子着手来看, c

  • Python 中导入csv数据的三种方法

    Python 中导入csv数据的三种方法,具体内容如下所示: 1.通过标准的Python库导入CSV文件: Python提供了一个标准的类库CSV文件.这个类库中的reader()函数用来导入CSV文件.当CSV文件被读入后,可以利用这些数据生成一个NumPy数组,用来训练算法模型.: from csv importreader import numpy as np filename=input("请输入文件名: ") withopen(filename,'rt',encoding='

  • 详细介绍在pandas中创建category类型数据的几种方法

    在pandas中创建category类型数据的几种方法之详细攻略 T1.直接创建 category类型数据 可知,在category类型数据中,每一个元素的值要么是预设好的类型中的某一个,要么是空值(np.nan). T2.利用分箱机制(结合max.mean.min实现二分类)动态添加 category类型数据 输出结果 [NaN, 'medium', 'medium', 'fat'] Categories (2, object): ['medium', 'fat']    name    ID

  • Python爬虫Xpath定位数据的两种方法

    方法一:直接右键,将文章路径复制下来点击Copy full Xpath 使用selenium+lxml中的etree进行配合使用,使用etree解析html网页 import requests from lxml import etree import time import socket import csv from selenium import webdriver from configparser import ConfigParser from selenium.webdriver

  • python爬取网站数据保存使用的方法

    编码问题因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了.问题要从文字的编码讲起.原本的英文编码只有0~255,刚好是8位1个字节.为了表示各种不同的语言,自然要进行扩充.中文的话有GB系列.可能还听说过Unicode和UTF-8,那么,它们之间是什么关系呢?Unicode是一种编码方案,又称万国码,可见其包含之广.但是具体存储到计算机上,并不用这种编码,可以说它起着一个中间人的作用.你可以再把Unicode编码(encode)为UTF-8,或者GB,再存储到计算机

随机推荐