7分钟读懂Go的临时对象池pool以及其应用场景

临时对象池 pool 是啥?

sync.Pool 给了一大段注释来说明 pool 是啥,我们看看这段都说了些什么。

临时对象池是一些可以分别存储和取出的临时对象。

池中的对象会在没有任何通知的情况下被移出(释放或者重新取出使用)。如果 pool 中持有某个对象的唯一引用,则该对象很可能会被回收。

Pool 在多 goroutine 使用环境中是安全的。

Pool 是用来缓存已经申请了的 目前未使用的 接下来可能会使用的 内存,以此缓解 GC 压力。使用它可以方便高效的构建线程安全的 free list(一种用于动态内存申请的数据结构)。然而,它并不适合所有场景的 free list。

在同一 package 中独立运行的多个独立线程之间静默共享一组临时元素才是 pool 的合理使用场景。Pool 提供在多个独立 client 之间共享临时元素的机制。

在 fmt 包中有一个使用 Pool 的例子,它维护了一个动态大小的输出 buffer。

另外,一些短生命周期的对象不适合使用 pool 来维护,这种情况下使用 pool 不划算。这是应该使用它们自己的 free list(这里可能指的是 go 内存模型中用于缓存 <32k小对象的 free list) 更高效。

Pool 一旦使用,不能被复制。

Pool 结构体的定义为:

type Pool struct {
 noCopy noCopy

 local  unsafe.Pointer // 本地P缓存池指针
 localSize uintptr  // 本地P缓存池大小

 // 当池中没有可能对象时
 // 会调用 New 函数构造构造一个对象
 New func() interface{}
}

Pool 中有两个定义的公共方法,分别是 Put - 向池中添加元素;Get - 从池中获取元素,如果没有,则调用 New 生成元素,如果 New 未设置,则返回 nil。

Get

Pool 会为每个 P 维护一个本地池,P 的本地池分为 私有池 private 和共享池 shared。私有池中的元素只能本地 P 使用,共享池中的元素可能会被其他 P 偷走,所以使用私有池 private 时不用加锁,而使用共享池 shared 时需加锁。

Get 会优先查找本地 private,再查找本地 shared,最后查找其他 P 的 shared,如果以上全部没有可用元素,最后会调用 New 函数获取新元素。

func (p *Pool) Get() interface{} {
 if race.Enabled {
  race.Disable()
 }
 // 获取本地 P 的 poolLocal 对象
 l := p.pin() 

 // 先获取 private 池中的对象(只有一个)
 x := l.private
 l.private = nil
 runtime_procUnpin()
 if x == nil {
  // 查找本地 shared 池,
  // 本地 shared 可能会被其他 P 访问
  // 需要加锁
  l.Lock()
  last := len(l.shared) - 1
  if last >= 0 {
   x = l.shared[last]
   l.shared = l.shared[:last]
  }
  l.Unlock()

  // 查找其他 P 的 shared 池
  if x == nil {
   x = p.getSlow()
  }
 }
 if race.Enabled {
  race.Enable()
  if x != nil {
   race.Acquire(poolRaceAddr(x))
  }
 }
 // 未找到可用元素,调用 New 生成
 if x == nil && p.New != nil {
  x = p.New()
 }
 return x
}

getSlow,从其他 P 中的 shared 池中获取可用元素:

func (p *Pool) getSlow() (x interface{}) {
 // See the comment in pin regarding ordering of the loads.
 size := atomic.LoadUintptr(&p.localSize) // load-acquire
 local := p.local       // load-consume
 // Try to steal one element from other procs.
 pid := runtime_procPin()
 runtime_procUnpin()
 for i := 0; i < int(size); i++ {
  l := indexLocal(local, (pid+i+1)%int(size))
  // 对应 pool 需加锁
  l.Lock()
  last := len(l.shared) - 1
  if last >= 0 {
   x = l.shared[last]
   l.shared = l.shared[:last]
   l.Unlock()
   break
  }
  l.Unlock()
 }
 return x
}

Put

Put 优先把元素放在 private 池中;如果 private 不为空,则放在 shared 池中。有趣的是,在入池之前,该元素有 1/4 可能被丢掉。

func (p *Pool) Put(x interface{}) {
 if x == nil {
  return
 }
 if race.Enabled {
  if fastrand()%4 == 0 {
   // 随机把元素扔掉...
   // Randomly drop x on floor.
   return
  }
  race.ReleaseMerge(poolRaceAddr(x))
  race.Disable()
 }
 l := p.pin()
 if l.private == nil {
  l.private = x
  x = nil
 }
 runtime_procUnpin()
 if x != nil {
  // 共享池访问,需要加锁
  l.Lock()
  l.shared = append(l.shared, x)
  l.Unlock()
 }
 if race.Enabled {
  race.Enable()
 }
}

poolCleanup

当世界暂停,垃圾回收将要开始时, poolCleanup 会被调用。该函数内不能分配内存且不能调用任何运行时函数。原因:
防止错误的保留整个 Pool

如果 GC 发生时,某个 goroutine 正在访问 l.shared,整个 Pool 将会保留,下次执行时将会有双倍内存

func poolCleanup() {
 for i, p := range allPools {
  allPools[i] = nil
  for i := 0; i < int(p.localSize); i++ {
   l := indexLocal(p.local, i)
   l.private = nil
   for j := range l.shared {
   l.shared[j] = nil
   }
   l.shared = nil
  }
  p.local = nil
  p.localSize = 0
 }
 allPools = []*Pool{}
}

案例1:gin 中的 Context pool

在 web 应用中,后台在处理用户的每条请求时都会为当前请求创建一个上下文环境 Context,用于存储请求信息及相应信息等。Context 满足长生命周期的特点,且用户请求也是属于并发环境,所以对于线程安全的 Pool 非常适合用来维护 Context 的临时对象池。

Gin 在结构体 Engine 中定义了一个 pool:

type Engine struct {
 // ... 省略了其他字段
 pool    sync.Pool
}

初始化 engine 时定义了 pool 的 New 函数:

engine.pool.New = func() interface{} {
 return engine.allocateContext()
}

// allocateContext
func (engine *Engine) allocateContext() *Context {
 // 构造新的上下文对象
 return &Context{engine: engine}
}

ServeHttp:

// 从 pool 中获取,并转化为 *Context
c := engine.pool.Get().(*Context)
c.writermem.reset(w)
c.Request = req
c.reset() // reset

engine.handleHTTPRequest(c)

// 再扔回 pool 中
engine.pool.Put(c)

案例2:fmt 中的 printer pool

printer 也符合长生命周期的特点,同时也会可能会在多 goroutine 中使用,所以也适合使用 pool 来维护。

printer 与 它的临时对象池

// pp 用来维护 printer 的状态
// 它通过 sync.Pool 来重用,避免申请内存
type pp struct {
 //... 字段已省略
}

var ppFree = sync.Pool{
 New: func() interface{} { return new(pp) },
}

获取与释放:

func newPrinter() *pp {
 p := ppFree.Get().(*pp)
 p.panicking = false
 p.erroring = false
 p.fmt.init(&p.buf)
 return p
}

func (p *pp) free() {
 p.buf = p.buf[:0]
 p.arg = nil
 p.value = reflect.Value{}
 ppFree.Put(p)
}

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • Go语言学习技巧之如何合理使用Pool

    前言 Go 1.3 的sync包中加入一个新特性:Pool. 这个类设计的目的是用来保存和复用临时对象,以减少内存分配,降低CG压力. type Pool func (p *Pool) Get() interface{} func (p *Pool) Put(x interface{}) New func() interface{} 垃圾回收一直是Go语言的一块心病,在它执行垃圾回收的时间中,你很难做什么. 在垃圾回收压力大的服务中,GC占据的CPU有可能超过2%,造成的Pause经常超过2ms

  • Go语言中使用 buffered channel 实现线程安全的 pool

    概述 我们已经知道 Go 语言提供了 sync.Pool,但是做的不怎么好,所以有必要自己来实现一个 pool. 给我看代码: 复制代码 代码如下: type Pool struct {   pool chan *Client } // 创建一个新的 pool func NewPool(max int) *Pool {   return &Pool{     pool: make(chan *Client, max),   } } // 从 pool 里借一个 Client func (p *P

  • 7分钟读懂Go的临时对象池pool以及其应用场景

    临时对象池 pool 是啥? sync.Pool 给了一大段注释来说明 pool 是啥,我们看看这段都说了些什么. 临时对象池是一些可以分别存储和取出的临时对象. 池中的对象会在没有任何通知的情况下被移出(释放或者重新取出使用).如果 pool 中持有某个对象的唯一引用,则该对象很可能会被回收. Pool 在多 goroutine 使用环境中是安全的. Pool 是用来缓存已经申请了的 目前未使用的 接下来可能会使用的 内存,以此缓解 GC 压力.使用它可以方便高效的构建线程安全的 free l

  • 带你5分钟读懂MySQL字符集设置

    一.内容概述 在MySQL的使用过程中,了解字符集.字符序的概念,以及不同设置对数据存储.比较的影响非常重要.不少同学在日常工作中遇到的"乱码"问题,很有可能就是因为对字符集与字符序的理解不到位.设置错误造成的. 本文由浅入深,分别介绍了如下内容: 字符集.字符序的基本概念及联系 MySQL支持的字符集.字符序设置级,各设置级别之间的联系 server.database.table.column级字符集.字符序的查看及设置 应该何时设置字符集.字符序 二.字符集.字符序的概念与联系 在

  • 5 分钟读懂Python 中的 Hook 钩子函数

    1. 什么是Hook 经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么? what is hook ?钩子hook,顾名思义,可以理解是一个挂钩,作用是有需要的时候挂一个东西上去.具体的解释是:钩子函数是把我们自己实现的hook函数在某一时刻挂接到目标挂载点上. hook函数的作用 举个例子,hook的概念在windows桌面软件开发很常见,特别是各种事件触发的机

  • 几分钟搞懂c#之FileStream对象读写大文件(推荐)

    还是一样,我先上代码,但是为了你们测试结果和我一样,必须先有准备工作,否则会找不到目录或者文件就没有效果: 既然是读取大文件,那么这个文本必须存在 现在来看目标目录 其实这里的文本文件可以删除,因为我们写入文本数据的时候的模式是当没有找到文件就创建新的. 下面上的上代码 "` using System; using System.Collections.Generic; using System.IO; using System.Reflection; using System.Text; na

  • 3分钟读懂移动端rem使用方法(推荐)

    1.为什么要用rem 博客很久没写了,原因很简单. 最近接手了一个项目,要同时做PC和移动端的页面,之前没接触过,但毕竟给钱的是大爷,所以还是硬着头皮上了. 移动端最麻烦的是什么? 不同分辨率适配! 具体来说,有的屏幕320px宽,有的屏幕640px宽,有的更宽,如果你写固定px,那么要么小的放不下,要么大的有大片空白. 怎么办? 如果元素固定占用屏幕空间(一般是指宽度而非高度,下同)的百分之xx就ok了. 比如320px的10%是32px,640px的10%是64px, 如果10个10%宽度的

  • 一文读懂c++11 Lambda表达式

    1.简介 1.1定义 C++11新增了很多特性,Lambda表达式(Lambda expression)就是其中之一,很多语言都提供了 Lambda 表达式,如 Python,Java ,C#等.本质上, Lambda 表达式是一个可调用的代码单元[1]^{[1]}[1].实际上是一个闭包(closure),类似于一个匿名函数,拥有捕获所在作用域中变量的能力,能够将函数做为对象一样使用,通常用来实现回调函数.代理等功能.Lambda表达式是函数式编程的基础,C++11引入了Lambda则弥补了C

  • 一文读懂Jvm类加载机制

    前言 一个月没更新了,这个月发生了太多的事情,导致更新的频率大大降低,不管怎样收拾心情,技术的研究不能落下! jvm作为每个java程序猿必须了解的知识,博主推荐一本书<深入理解Java虚拟机>,以前博主在学校的时候看过几遍,每一次看都有新的理解.加上工作了也有一年多的时间了,有必要好好总结一番~ 什么是jvm 平常我们编写代码都是编写的.java文件,怎么部署到机器上运行呢?通过打jar包或者war包,然后部署运行. 如果看过jar包的内容那么就能知道,我们写的.java文件全部被编译成了.

  • 一篇文章读懂Python赋值与拷贝

    变量与赋值 在 Python 中,一切皆为对象,对象通过「变量名」引用,「变量名」更确切的叫法是「名字」,好比我们每个人都有自己的名字一样,咱们通过名字来代指某个人,代码里面通过名字来指代某个对象. 变量赋值就是给对象绑定一个名字,赋值并不会拷贝对象.好比我们出生的时候父母就要给我们取一个名字一样,给人取个绰号并不来多出一个人来,只是多一个名字罢了. 两个对象做比较有两种方式,分别是:is 与 == ,is比较的是两个对象是否相同,通过对象的ID值可识别是否为相同对象,==比较的是两个对象的值是

  • 一文读懂JAVA中HttpURLConnection的用法

    针对JDK中的URLConnection连接Servlet的问题,网上有虽然有所涉及,但是只是说明了某一个或几个问题,是以FAQ的方式来解决的,而且比较零散,现在对这个类的使用就本人在项目中的使用经验做如下总结: 1:> URL请求的类别: 分为二类,GET与POST请求.二者的区别在于: a:) get请求可以获取静态页面,也可以把参数放在URL字串后面,传递给servlet, b:) post与get的不同之处在于post的参数不是放在URL字串里面,而是放在http请求的正文内. 2:>

  • 一文读懂c++之static关键字

    一.静态变量 与C语言一样,可以使用static说明自动变量.根据定义的位置不同,分为静态全局变量和静态局部变量. 全局变量是指在所有花括号之外声明的变量,其作用域范围是全局可见的,即在整个项目文件内都有效.使用static修饰的全局变量是静态全局变量,其作用域有所限制,仅在定义该变量的源文件内有效,项目中的其他源文件中不能使用它. 块内定义的变量是局部变量,从定义之处开始到本块结束处为止是局部变量的作用域.使用static修饰的局部变量是静态局部变量,即定义在块中的静态变量.静态局部变量具有局

随机推荐