python numpy库中数组遍历的方法
1.对于一维数组,可以有:
2. 对于二维数组:考虑可将其看作为矩阵,故可以如下书写二重遍历
这里外层循环的是二维数组A的行,内层则是列
同时c的作用:不想用肉眼直接观察得到行列数,故用A.shape方法获得(2,6)的元组,然后改变数据类型为列表,然后直接使用。
3.对于三维数组,如:
有两个二维数组,二维数组中又有三个长度为4的数组。可以这样子循环:
又len(f) = 2, len(f[0]) = 3, len(f[0][0]) = 4;故可以再一次改进代码,这里就不写了。
f[0]:三维数组中第一个元素列表;f[0][0]:三维数组中第一个列表的第一个元素列表。
(也可以用 c = list(f.shape)获得列表再使用)
更高维数组遍历如上改进即可。
到此这篇关于python numpy库中数组遍历的方法的文章就介绍到这了,更多相关numpy 数组遍历内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
相关推荐
-
python中的Numpy二维数组遍历与二维数组切片后遍历效率比较
在python-numpy使用中,可以用双层 for循环对数组元素进行访问,也可以切片成每一行后进行一维数组的遍历. 代码如下: import numpy as np import time NUM = 160 a=np.random.random((NUM,NUM)) start = time.time() for i in range(NUM): for j in range(NUM): if a[i][j] == 1.0: pass end1
-
python numpy库中数组遍历的方法
1.对于一维数组,可以有: 2. 对于二维数组:考虑可将其看作为矩阵,故可以如下书写二重遍历 这里外层循环的是二维数组A的行,内层则是列 同时c的作用:不想用肉眼直接观察得到行列数,故用A.shape方法获得(2,6)的元组,然后改变数据类型为列表,然后直接使用. 3.对于三维数组,如: 有两个二维数组,二维数组中又有三个长度为4的数组.可以这样子循环: 又len(f) = 2, len(f[0]) = 3, len(f[0][0]) = 4;故可以再一次改进代码,这里就不写了. f[0]:三维
-
Python pandas库中isnull函数使用方法
前言: python的pandas库中有⼀个⼗分便利的isnull()函数,它可以⽤来判断缺失值,我们通过⼏个例⼦学习它的使⽤⽅法.⾸先我们创建⼀个dataframe,其中有⼀些数据为缺失值. import pandas as pd import numpy as np df = pd.DataFrame(np.random.randint(10,99,size=(10,5))) df.iloc[4:6,0] = np.nan df.iloc[5:7,2] = np.nan df.iloc[7,
-
python基础之Numpy库中array用法总结
目录 前言 为什么要用numpy 数组的创建 生成均匀分布的array: 生成特殊数组 获取数组的属性 数组索引,切片,赋值 数组操作 输出数组 总结 前言 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. NumPy数组是一个多维数组对象,称为ndarray.数组的下标从0开始,同一个NumPy数组中所有元素的类型必须是相同的. >>>
-
python 的numpy库中的mean()函数用法介绍
1. mean() 函数定义: numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source] Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over
-
Python Numpy库常见用法入门教程
本文实例讲述了Python Numpy库常见用法.分享给大家供大家参考,具体如下: 1.简介 Numpy是一个常用的Python科学技术库,通过它可以快速对数组进行操作,包括形状操作.排序.选择.输入输出.离散傅立叶变换.基本线性代数,基本统计运算和随机模拟等.许多Python库和科学计算的软件包都使用Numpy数组作为操作对象,或者将传入的Python数组转化为Numpy数组,因此在Python中操作数据离不开Numpy. Numpy的核心是ndarray对象,由Python的n维数组封装而来
-
利用python在excel中画图的实现方法
一.前言 以前大学时候,学EXCEL看到N多大神利用excel画图,觉得很不可思议.今个学了一个来月python,膨胀了就想用excel画图.当然,其实用画图这个词不甚严谨,实际上是利用opencv遍历每一个像素的rgb值,再将其转化为16进制,最后调用openpyxl进行填充即可. 1.1.实现效果 效果如下图 1.2.需要用到的库的安装 需要用到库如下: import cv2 #导入OpenCV库 import xlsxwriter #利用这个调整行高列宽 import openpyxl #
-
使用Python NumPy库绘制渐变图案
目录 1. 导入模块 2. 基本绘画流程 3. 生成随机彩色图像 4. 生成渐变色图像 5. 在渐变色背景上画曲线 6. 使用颜色映射(ColorMap) 7. 展示NumPy的魅力 NumPy也可以画图吗?当然!NumPy不仅可以画,还可以画得更好.画得更快!比如下面这幅画,只需要10行代码就可以画出来.若能整明白这10行代码,就意味着叩开了NumPy的大门.请打开你的Python IDLE,跟随我的脚步,一起来体验一下交互式编程的乐趣吧,看看如何用NumPy画图,以及用NumPy可以画出什么
-
Python Numpy库的超详细教程
1.Numpy概述 1.1 概念 Python本身含有列表和数组,但对于大数据来说,这些结构是有很多不足的.由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.对于数值运算来说这种 结构比较浪费内存和CPU资源.至于数组对象,它可以直接保存 数值,和C语言的一维数组比较类似.但是由于它不支持多维,在上面的函数也不多,因此也不适合做数值运算.Numpy提供了两种基本的对象:ndarray(N-dimensional Array Object)和 ufunc(Universal Funct
-
Python Numpy库的超详细教程
1.Numpy概述 1.1 概念 Python本身含有列表和数组,但对于大数据来说,这些结构是有很多不足的.由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.对于数值运算来说这种 结构比较浪费内存和CPU资源.至于数组对象,它可以直接保存 数值,和C语言的一维数组比较类似.但是由于它不支持多维,在上面的函数也不多,因此也不适合做数值运算.Numpy提供了两种基本的对象:ndarray(N-dimensional Array Object)和 ufunc(Universal Funct
随机推荐
- hta实现的二进制文件转换为文本
- 详解nginx配置url重定向-反向代理
- 对于Python中RawString的理解介绍
- asp.net下URL处理两个小工具方法
- centos把网卡名称修改为eth0的方法
- Swift实现Selection Sort选择排序算法的实例讲解
- JavaScript怎么判断图片是否加载完成以便获取其尺寸
- 制作个性化的WordPress登陆界面的实例教程
- 用JSP/ASP创建WAP应用
- 两种简单的跨域方法(jsonp、php)
- JavaScript实现把数字转换成中文
- python cookielib 登录人人网的实现代码
- C#算法函数:获取一个字符串中的最大长度的数字
- jquery实现的鼠标下拉滚动置顶效果
- 存储过程的输出参数,返回值与结果集
- jQuery 跨域访问解决原理案例详解
- JavaScript函数柯里化详解
- ES6 javascript的异步操作实例详解
- windows 服务器安全经验总结_青云原创
- Java的Spring框架中bean的继承与内部bean的注入