用Python实现随机森林算法的示例

拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱。bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态)。

随机森林算法(Random forest algorithm)是对 bagging 算法的扩展。除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做了一定限制,使得生成的决策树之间没有关联,从而提升算法效果。

本教程将实现如何用 Python 实现随机森林算法。

  • bagged decision trees 与随机森林算法的差异;
  • 如何构建含更多方差的装袋决策树;
  • 如何将随机森林算法运用于预测模型相关的问题。

算法描述

这个章节将对随机森林算法本身以及本教程的算法试验所用的声纳数据集(Sonar dataset)做一个简要介绍。

随机森林算法

决策树运行的每一步都涉及到对数据集中的最优分裂点(best split point)进行贪婪选择(greedy selection)。

这个机制使得决策树在没有被剪枝的情况下易产生较高的方差。整合通过提取训练数据库中不同样本(某一问题的不同表现形式)构建的复合树及其生成的预测值能够稳定并降低这样的高方差。这种方法被称作引导聚集算法(bootstrap aggregating),其简称 bagging 正好是装进口袋,袋子的意思,所以被称为「装袋算法」。该算法的局限在于,由于生成每一棵树的贪婪算法是相同的,那么有可能造成每棵树选取的分裂点(split point)相同或者极其相似,最终导致不同树之间的趋同(树与树相关联)。相应地,反过来说,这也使得其会产生相似的预测值,降低原本要求的方差。

我们可以采用限制特征的方法来创建不一样的决策树,使贪婪算法能够在建树的同时评估每一个分裂点。这就是随机森林算法(Random Forest algorithm)。

与装袋算法一样,随机森林算法从训练集里撷取复合样本并训练。其不同之处在于,数据在每个分裂点处完全分裂并添加到相应的那棵决策树当中,且可以只考虑用于存储属性的某一固定子集。

对于分类问题,也就是本教程中我们将要探讨的问题,其被考虑用于分裂的属性数量被限定为小于输入特征的数量之平方根。代码如下:

num_features_for_split = sqrt(total_input_features)

这个小更改会让生成的决策树各不相同(没有关联),从而使得到的预测值更加多样化。而多样的预测值组合往往会比一棵单一的决策树或者单一的装袋算法有更优的表现。

声纳数据集(Sonar dataset)

我们将在本教程里使用声纳数据集作为输入数据。这是一个描述声纳反射到不同物体表面后返回的不同数值的数据集。60 个输入变量表示声纳从不同角度返回的强度。这是一个二元分类问题(binary classification problem),要求模型能够区分出岩石和金属柱体的不同材质和形状,总共有 208 个观测样本。

该数据集非常易于理解——每个变量都互有连续性且都在 0 到 1 的标准范围之间,便于数据处理。作为输出变量,字符串'M'表示金属矿物质,'R'表示岩石。二者需分别转换成整数 1 和 0。

通过预测数据集(M 或者金属矿物质)中拥有最多观测值的类,零规则算法(Zero Rule Algorithm)可实现 53% 的精确度。

更多有关该数据集的内容可参见 UCI Machine Learning repository:https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

免费下载该数据集,将其命名为 sonar.all-data.csv,并存储到需要被操作的工作目录当中。

教程

此次教程分为两个步骤。

1. 分裂次数的计算。

2. 声纳数据集案例研究

这些步骤能让你了解为你自己的预测建模问题实现和应用随机森林算法的基础

1. 分裂次数的计算

在决策树中,我们通过找到一些特定属性和属性的值来确定分裂点,这类特定属性需表现为其所需的成本是最低的。

分类问题的成本函数(cost function)通常是基尼指数(Gini index),即计算由分裂点产生的数据组的纯度(purity)。对于这样二元分类的分类问题来说,指数为 0 表示绝对纯度,说明类值被完美地分为两组。

从一棵决策树中找到最佳分裂点需要在训练数据集中对每个输入变量的值做成本评估。

在装袋算法和随机森林中,这个过程是在训练集的样本上执行并替换(放回)的。因为随机森林对输入的数据要进行行和列的采样。对于行采样,采用有放回的方式,也就是说同一行也许会在样本中被选取和放入不止一次。

我们可以考虑创建一个可以自行输入属性的样本,而不是枚举所有输入属性的值以期找到获取成本最低的分裂点,从而对这个过程进行优化。

该输入属性样本可随机选取且没有替换过程,这就意味着在寻找最低成本分裂点的时候每个输入属性只需被选取一次。

如下的代码所示,函数 get_split() 实现了上述过程。它将一定数量的来自待评估数据的输入特征和一个数据集作为参数,该数据集可以是实际训练集里的样本。辅助函数 test_split() 用于通过候选的分裂点来分割数据集,函数 gini_index() 用于评估通过创建的行组(groups of rows)来确定的某一分裂点的成本。

以上我们可以看出,特征列表是通过随机选择特征索引生成的。通过枚举该特征列表,我们可将训练集中的特定值评估为符合条件的分裂点。

# Select the best split point for a dataset
def get_split(dataset, n_features):
 class_values = list(set(row[-1] for row in dataset))
 b_index, b_value, b_score, b_groups = 999, 999, 999, None
 features = list()
 while len(features) < n_features:
  index = randrange(len(dataset[0])-1)
  if index not in features:
   features.append(index)
 for index in features:
  for row in dataset:
   groups = test_split(index, row[index], dataset)
   gini = gini_index(groups, class_values)
   if gini < b_score:
    b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 return {'index':b_index, 'value':b_value, 'groups':b_groups}

至此,我们知道该如何改造一棵用于随机森林算法的决策树。我们可将之与装袋算法结合运用到真实的数据集当中。

2. 关于声纳数据集的案例研究

在这个部分,我们将把随机森林算法用于声纳数据集。本示例假定声纳数据集的 csv 格式副本已存在于当前工作目录中,文件名为 sonar.all-data.csv。

首先加载该数据集,将字符串转换成数字,并将输出列从字符串转换成数值 0 和 1. 这个过程是通过辅助函数 load_csv()、str_column_to_float() 和 str_column_to_int() 来分别实现的。

我们将通过 K 折交叉验证(k-fold cross validatio)来预估得到的学习模型在未知数据上的表现。这就意味着我们将创建并评估 K 个模型并预估这 K 个模型的平均误差。评估每一个模型是由分类准确度来体现的。辅助函数 cross_validation_split()、accuracy_metric() 和 evaluate_algorithm() 分别实现了上述功能。

装袋算法将通过分类和回归树算法来满足。辅助函数 test_split() 将数据集分割成不同的组;gini_index() 评估每个分裂点;前文提及的改进过的 get_split() 函数用来获取分裂点;函数 to_terminal()、split() 和 build_tree() 用以创建单个决策树;predict() 用于预测;subsample() 为训练集建立子样本集; bagging_predict() 对决策树列表进行预测。

新命名的函数 random_forest() 首先从训练集的子样本中创建决策树列表,然后对其进行预测。

正如我们开篇所说,随机森林与决策树关键的区别在于前者在建树的方法上的小小的改变,这一点在运行函数 get_split() 得到了体现。

完整的代码如下:

# Random Forest Algorithm on Sonar Dataset
from random import seed
from random import randrange
from csv import reader
from math import sqrt

# Load a CSV file
def load_csv(filename):
 dataset = list()
 with open(filename, 'r') as file:
  csv_reader = reader(file)
  for row in csv_reader:
   if not row:
    continue
   dataset.append(row)
 return dataset

# Convert string column to float
def str_column_to_float(dataset, column):
 for row in dataset:
  row[column] = float(row[column].strip())

# Convert string column to integer
def str_column_to_int(dataset, column):
 class_values = [row[column] for row in dataset]
 unique = set(class_values)
 lookup = dict()
 for i, value in enumerate(unique):
  lookup[value] = i
 for row in dataset:
  row[column] = lookup[row[column]]
 return lookup

# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
 dataset_split = list()
 dataset_copy = list(dataset)
 fold_size = len(dataset) / n_folds
 for i in range(n_folds):
  fold = list()
  while len(fold) < fold_size:
   index = randrange(len(dataset_copy))
   fold.append(dataset_copy.pop(index))
  dataset_split.append(fold)
 return dataset_split

# Calculate accuracy percentage
def accuracy_metric(actual, predicted):
 correct = 0
 for i in range(len(actual)):
  if actual[i] == predicted[i]:
   correct += 1
 return correct / float(len(actual)) * 100.0

# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
 folds = cross_validation_split(dataset, n_folds)
 scores = list()
 for fold in folds:
  train_set =a list(folds)
  train_set.remove(fold)
  train_set = sum(train_set, [])
  test_set = list()
  for row in fold:
   row_copy = list(row)
   test_set.append(row_copy)
   row_copy[-1] = None
  predicted = algorithm(train_set, test_set, *args)
  actual = [row[-1] for row in fold]
  accuracy = accuracy_metric(actual, predicted)
  scores.append(accuracy)
 return scores

# Split a dataset based on an attribute and an attribute value
def test_split(index, value, dataset):
 left, right = list(), list()
 for row in dataset:
  if row[index] < value:
   left.append(row)
  else:
   right.append(row)
 return left, right

# Calculate the Gini index for a split dataset
def gini_index(groups, class_values):
 gini = 0.0
 for class_value in class_values:
  for group in groups:
   size = len(group)
   if size == 0:
    continue
   proportion = [row[-1] for row in group].count(class_value) / float(size)
   gini += (proportion * (1.0 - proportion))
 return gini

# Select the best split point for a dataset
def get_split(dataset, n_features):
 class_values = list(set(row[-1] for row in dataset))
 b_index, b_value, b_score, b_groups = 999, 999, 999, None
 features = list()
 while len(features) < n_features:
  index = randrange(len(dataset[0])-1)
  if index not in features:
   features.append(index)
 for index in features:
  for row in dataset:
   groups = test_split(index, row[index], dataset)
   gini = gini_index(groups, class_values)
   if gini < b_score:
    b_index, b_value, b_score, b_groups = index, row[index], gini, groups
 return {'index':b_index, 'value':b_value, 'groups':b_groups}

# Create a terminal node value
def to_terminal(group):
 outcomes = [row[-1] for row in group]
 return max(set(outcomes), key=outcomes.count)

# Create child splits for a node or make terminal
def split(node, max_depth, min_size, n_features, depth):
 left, right = node['groups']
 del(node['groups'])
 # check for a no split
 if not left or not right:
  node['left'] = node['right'] = to_terminal(left + right)
  return
 # check for max depth
 if depth >= max_depth:
  node['left'], node['right'] = to_terminal(left), to_terminal(right)
  return
 # process left child
 if len(left) <= min_size:
  node['left'] = to_terminal(left)
 else:
  node['left'] = get_split(left, n_features)
  split(node['left'], max_depth, min_size, n_features, depth+1)
 # process right child
 if len(right) <= min_size:
  node['right'] = to_terminal(right)
 else:
  node['right'] = get_split(right, n_features)
  split(node['right'], max_depth, min_size, n_features, depth+1)

# Build a decision tree
def build_tree(train, max_depth, min_size, n_features):
 root = get_split(dataset, n_features)
 split(root, max_depth, min_size, n_features, 1)
 return root

# Make a prediction with a decision tree
def predict(node, row):
 if row[node['index']] < node['value']:
  if isinstance(node['left'], dict):
   return predict(node['left'], row)
  else:
   return node['left']
 else:
  if isinstance(node['right'], dict):
   return predict(node['right'], row)
  else:
   return node['right']

# Create a random subsample from the dataset with replacement
def subsample(dataset, ratio):
 sample = list()
 n_sample = round(len(dataset) * ratio)
 while len(sample) < n_sample:
  index = randrange(len(dataset))
  sample.append(dataset[index])
 return sample

# Make a prediction with a list of bagged trees
def bagging_predict(trees, row):
 predictions = [predict(tree, row) for tree in trees]
 return max(set(predictions), key=predictions.count)

# Random Forest Algorithm
def random_forest(train, test, max_depth, min_size, sample_size, n_trees, n_features):
 trees = list()
 for i in range(n_trees):
  sample = subsample(train, sample_size)
  tree = build_tree(sample, max_depth, min_size, n_features)
  trees.append(tree)
 predictions = [bagging_predict(trees, row) for row in test]
 return(predictions)

# Test the random forest algorithm
seed(1)
# load and prepare data
filename = 'sonar.all-data.csv'
dataset = load_csv(filename)
# convert string attributes to integers
for i in range(0, len(dataset[0])-1):
 str_column_to_float(dataset, i)
# convert class column to integers
str_column_to_int(dataset, len(dataset[0])-1)
# evaluate algorithm
n_folds = 5
max_depth = 10
min_size = 1
sample_size = 1.0
n_features = int(sqrt(len(dataset[0])-1))
for n_trees in [1, 5, 10]:
 scores = evaluate_algorithm(dataset, random_forest, n_folds, max_depth, min_size, sample_size, n_trees, n_features)
 print('Trees: %d' % n_trees)
 print('Scores: %s' % scores)
  print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores))))

这里对第 197 行之后对各项参数的赋值做一个说明。

将 K 赋值为 5 用于交叉验证,得到每个子样本为 208/5 = 41.6,即超过 40 条声纳返回记录会用于每次迭代时的评估。

每棵树的最大深度设置为 10,每个节点的最小训练行数为 1. 创建训练集样本的大小与原始数据集相同,这也是随机森林算法的默认预期值。

我们把在每个分裂点需要考虑的特征数设置为总的特征数目的平方根,即 sqrt(60)=7.74,取整为 7。

将含有三组不同数量的树同时进行评估,以表明添加更多的树可以使该算法实现的功能更多。

最后,运行这个示例代码将会 print 出每组树的相应分值以及每种结构的平均分值。如下所示:

Trees: 1
Scores: [68.29268292682927, 75.60975609756098, 70.73170731707317, 63.41463414634146, 65.85365853658537]
Mean Accuracy: 68.780%

Trees: 5
Scores: [68.29268292682927, 68.29268292682927, 78.04878048780488, 65.85365853658537, 68.29268292682927]
Mean Accuracy: 69.756%

Trees: 10
Scores: [68.29268292682927, 78.04878048780488, 75.60975609756098, 70.73170731707317, 70.73170731707317]
Mean Accuracy: 72.683%

扩展

本节会列出一些与本次教程相关的扩展内容。大家或许有兴趣一探究竟。

  • 算法调校(Algorithm Tuning)。本文所用的配置参数或有未被修正的错误以及有待商榷之处。用更大规模的树,不同的特征数量甚至不同的树的结构都可以改进试验结果。
  • 更多问题。该方法同样适用于其他的分类问题,甚至是用新的成本计算函数以及新的组合树的预期值的方法使其适用于回归算法。

回顾总结

通过本次教程的探讨,你知道了随机森林算法是如何实现的,特别是:

随机森林与装袋决策树的区别。

如何用决策树生成随机森林算法。

如何将随机森林算法应用于解决实际操作中的预测模型问题。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现的中国剩余定理算法示例

    本文实例讲述了Python实现的中国剩余定理算法.分享给大家供大家参考,具体如下: 中国剩余定理(Chinese Remainder Theorem-CRT):又称孙子定理,是数论中的一个定理.即如果一个人知道了一个数n被多个整数相除得到的余数,当这些除数两两互质的情况下,这个人就可以唯一的确定被这些个整数乘积除n所得的余数. 维基百科上wiki:The Chinese remainder theorem is a theorem of number theory, which states t

  • python实现八大排序算法(2)

    本文接上一篇博客python实现的八大排序算法part1,将继续使用python实现八大排序算法中的剩余四个:快速排序.堆排序.归并排序.基数排序 5.快速排序 快速排序是通常被认为在同数量级(O(nlog2n))的排序方法中平均性能最好的. 算法思想: 已知一组无序数据a[1].a[2].--a[n],需将其按升序排列.首先任取数据a[x]作为基准.比较a[x]与其它数据并排序,使a[x]排在数据的第k位,并且使a[1]~a[k-1]中的每一个数据<a[x],a[k+1]~a[n]中的每一个数

  • Python计算斗牛游戏概率算法实例分析

    本文实例讲述了Python计算斗牛游戏概率算法.分享给大家供大家参考,具体如下: 过年回家,都会约上亲朋好友聚聚会,会上经常会打麻将,斗地主,斗牛.在这些游戏中,斗牛是最受欢迎的,因为可以很多人一起玩,而且没有技术含量,都是看运气(专业术语是概率). 斗牛的玩法是: 1. 把牌中的JQK都拿出来 2. 每个人发5张牌 3. 如果5张牌中任意三张加在一起是10的 倍数,就是有牛.剩下两张牌的和的10的余数就是牛数. 牌的大小: 4条 > 3条 > 牛十 > 牛九 > -- >

  • Python基于分水岭算法解决走迷宫游戏示例

    本文实例讲述了Python基于分水岭算法解决走迷宫游戏.分享给大家供大家参考,具体如下: #Solving maze with morphological transformation """ usage:Solving maze with morphological transformation needed module:cv2/numpy/sys ref: 1.http://www.mazegenerator.net/ 2.http://blog.leanote.com

  • python编程羊车门问题代码示例

    问题: 有3扇关闭的门,一扇门后面停着汽车,其余门后是山羊,只有主持人知道每扇门后面是什么.参赛者可以选择一扇门,在开启它之前,主持人会开启另外一扇门,露出门后的山羊,然后允许参赛者更换自己的选择. 请问: 1.按照你的第一感觉回答,你觉得不换选择能有更高的几率获得汽车,还是换选择能有更高的几率获得汽车?或几率没有发生变化? 答:第一感觉换与不换获奖几率没有发生变化. 2.请自己认真分析一下"不换选择能有更高的几率获得汽车,还是换选择能有更高的几率获得汽车?或几率没有发生变化?" 写出

  • 用Python实现随机森林算法的示例

    拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做了一定限制,使得生成的决策树之间没有关联,

  • Python实现孤立随机森林算法的示例代码

    目录 1 简介 2 孤立随机森林算法 2.1 算法概述 2.2 原理介绍 2.3 算法步骤 3 参数讲解 4 Python代码实现 5 结果 1 简介 孤立森林(isolation Forest)是一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或基尼指数来选择. 2 孤立随机森林算法 2.1 算法概述 Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好

  • Python决策树和随机森林算法实例详解

    本文实例讲述了Python决策树和随机森林算法.分享给大家供大家参考,具体如下: 决策树和随机森林都是常用的分类算法,它们的判断逻辑和人的思维方式非常类似,人们常常在遇到多个条件组合问题的时候,也通常可以画出一颗决策树来帮助决策判断.本文简要介绍了决策树和随机森林的算法以及实现,并使用随机森林算法和决策树算法来检测FTP暴力破解和POP3暴力破解,详细代码可以参考: https://github.com/traviszeng/MLWithWebSecurity 决策树算法 决策树表现了对象属性和

  • python实现H2O中的随机森林算法介绍及其项目实战

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator H2ORandomForestEstimator 的常用方法和参数介绍: (一)建模方法: model =H2ORandomForestEstimator(ntrees=n,max_depth =m) model.train(x=random_pv.names,y='Catrgory',train

  • Python实现的随机森林算法与简单总结

    本文实例讲述了Python实现的随机森林算法.分享给大家供大家参考,具体如下: 随机森林是数据挖掘中非常常用的分类预测算法,以分类或回归的决策树为基分类器.算法的一些基本要点: *对大小为m的数据集进行样本量同样为m的有放回抽样: *对K个特征进行随机抽样,形成特征的子集,样本量的确定方法可以有平方根.自然对数等: *每棵树完全生成,不进行剪枝: *每个样本的预测结果由每棵树的预测投票生成(回归的时候,即各棵树的叶节点的平均) 著名的python机器学习包scikit learn的文档对此算法有

  • python 随机森林算法及其优化详解

    前言 优化随机森林算法,正确率提高1%~5%(已经有90%+的正确率,再调高会导致过拟合) 论文当然是参考的,毕竟出现早的算法都被人研究烂了,什么优化基本都做过.而人类最高明之处就是懂得利用前人总结的经验和制造的工具(说了这么多就是为偷懒找借口.hhhh) 优化思路 1. 计算传统模型准确率 2. 计算设定树木颗数时最佳树深度,以最佳深度重新生成随机森林 3. 计算新生成森林中每棵树的AUC,选取AUC靠前的一定百分比的树 4. 通过计算各个树的数据相似度,排除相似度超过设定值且AUC较小的树

  • Python实现随机爬山算法

    随机爬山是一种优化算法.它利用随机性作为搜索过程的一部分.这使得该算法适用于非线性目标函数,而其他局部搜索算法不能很好地运行.它也是一种局部搜索算法,这意味着它修改了单个解决方案并搜索搜索空间的相对局部区域,直到找到局部最优值为止.这意味着它适用于单峰优化问题或在应用全局优化算法后使用. 在本教程中,您将发现用于函数优化的爬山优化算法完成本教程后,您将知道: 爬山是用于功能优化的随机局部搜索算法. 如何在Python中从头开始实现爬山算法. 如何应用爬山算法并检查算法结果. 教程概述 本教程分为

  • Python实现粒子群算法的示例

    粒子群算法是一种基于鸟类觅食开发出来的优化算法,它是从随机解出发,通过迭代寻找最优解,通过适应度来评价解的品质. PSO算法的搜索性能取决于其全局探索和局部细化的平衡,这在很大程度上依赖于算法的控制参数,包括粒子群初始化.惯性因子w.最大飞翔速度和加速常数与等. PSO算法具有以下优点: 不依赖于问题信息,采用实数求解,算法通用性强. 需要调整的参数少,原理简单,容易实现,这是PSO算法的最大优点. 协同搜索,同时利用个体局部信息和群体全局信息指导搜索. 收敛速度快, 算法对计算机内存和CPU要

  • R语言关于随机森林算法的知识点详解

    在随机森林方法中,创建大量的决策树. 每个观察被馈入每个决策树. 每个观察的最常见的结果被用作最终输出. 新的观察结果被馈入所有的树并且对每个分类模型取多数投票. 对构建树时未使用的情况进行错误估计. 这称为OOB(袋外)误差估计,其被提及为百分比. R语言包"randomForest"用于创建随机森林. 安装R包 在R语言控制台中使用以下命令安装软件包. 您还必须安装相关软件包(如果有). install.packages("randomForest") 包&qu

  • R语言实现随机森林的方法示例

    目录 随机森林算法介绍 算法介绍: 决策树生长步骤: 投票过程: 基本思想: 随机森林的优点: 缺点 R语言实现 随机森林模型搭建 1:randomForest()函数用于构建随机森林模型 2:importance()函数用于计算模型变量的重要性 3:MDSplot()函数用于实现随机森林的可视化 4:rfImpute()函数可为存在缺失值的数据集进行插补(随机森林法),得到最优的样本拟合值 5:treesize()函数用于计算随机森林中每棵树的节点个数 随机森林算法介绍 算法介绍: 简单的说,

随机推荐