python下实现二叉堆以及堆排序的示例

堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序。堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势。

堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大。小头堆则相反。

我大概讲解下建一个树形堆的算法过程:

找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点和父结点进行对比, 如果比父结点大, 与父节点交换数据。当然, 我只是大概说了下实现, 在此过程中, 还需要考虑结点不存在的情况。

看下代码:

# 构建二叉堆
def binaryHeap(arr, lenth, m):
 temp = arr[m] # 当前结点的值
 while(2*m+1 < lenth):
 lchild = 2*m+1
 if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]:
 lchild = lchild + 1
 if temp < arr[lchild]:
 arr[m] = arr[lchild]
 else:
 break
 m = lchild
 arr[m] = temp 

def heapsort(arr, length):
 i = int(len(arr)/2)
 while(i >= 0):
 binaryHeap(arr, len(arr), i)
 i = i - 1 

 print("二叉堆的物理顺序为:")
 print(arr) # 输出二叉堆的物理顺序 

if __name__ == '__main__':
 arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98] 

 heapsort(arr, len(arr))

堆排序过程就是依次将最后的结点与首个节点进行对比交换:

# 构建二叉堆
def binaryHeap(arr, lenth, m):
  temp = arr[m] # 当前结点的值
  while(2*m+1 < lenth):
    lchild = 2*m+1
    if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]:
      lchild = lchild + 1
    if temp < arr[lchild]:
      arr[m] = arr[lchild]
    else:
      break
    m = lchild
  arr[m] = temp

def heapsort(arr, length):
  i = int(len(arr)/2)
  while(i >= 0):
    binaryHeap(arr, len(arr), i)
    i = i - 1

  print("二叉堆的物理顺序为:")
  print(arr) # 输出二叉堆的物理顺序

  i = length-1
  while(i > 0):
    arr[i], arr[0] = arr[0], arr[i] # 变量交换
    binaryHeap(arr, i, 0)
    i = i - 1560

def pop(arr):
  first = arr.pop(0)
  return first

if __name__ == '__main__':
  arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98]

  heapsort(arr, len(arr))

  print("堆排序后的物理顺序")
  print(arr) # 输出经过堆排序之后的物理顺序

  data = pop(arr)
  print(data)

  print(arr)

python封装了一个堆模块, 我们使用该模块可以很高效的实现一个优先队列

import heapq

class Item:
  def __init__(self, name):
    self.name = name

  def __repr__(self):
    return 'Item({!r})'.format(self.name)

class PriorityQueue:
  def __init__(self):
    self._queue = []
    self._index = 0

  def push(self, item, priority):
    heapq.heappush(self._queue, (-priority, self._index, item)) # 存入一个三元组
    self._index += 1

  def pop(self):
    return heapq.heappop(self._queue)[-1] # 逆序输出

if __name__ == '__main__':
  p = PriorityQueue()
  p.push(Item('foo'), 1)
  p.push(Item('bar'), 5)
  p.push(Item('spam'), 4)
  p.push(Item('grok'), 1)

  print(p.pop())
  print(p.pop())

具体请看heapq官网

以上这篇python下实现二叉堆以及堆排序的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python下实现二叉堆以及堆排序的示例

    堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序.堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势. 堆分为大头堆和小头堆, 正如其名, 大头堆的第一个元素是最大的, 每个有子结点的父结点, 其数据值都比其子结点的值要大.小头堆则相反. 我大概讲解下建一个树形堆的算法过程: 找到N/2 位置的数组数据, 从这个位置开始, 找到该节点的左子结点的索引, 先比较这个结点的下的子结点, 找到最大的那个, 将最大的子结点的索引赋值给左子结点, 然后将最大的子结点

  • 理解二叉堆数据结构及Swift的堆排序算法实现示例

    二叉堆的性质 1.二叉堆是一颗完全二叉树,最后一层的叶子从左到右排列,其它的每一层都是满的 2.最小堆父结点小于等于其每一个子结点的键值,最大堆则相反 3.每个结点的左子树或者右子树都是一个二叉堆 下面是一个最小堆: 堆的存储 通常堆是通过一维数组来实现的.在起始数组为 0 的情形中: 1.父节点i的左子节点在位置 (2*i+1); 2.父节点i的右子节点在位置 (2*i+2); 3.子节点i的父节点在位置 floor((i-1)/2); 维持堆的性质 我们以最大堆来介绍(后续会分别给出最大堆和

  • Python实现二叉堆

    优先队列的二叉堆实现 在前面的章节里我们学习了"先进先出"(FIFO)的数据结构:队列(Queue).队列有一种变体叫做"优先队列"(Priority Queue).优先队列的出队(Dequeue)操作和队列一样,都是从队首出队.但在优先队列的内部,元素的次序却是由"优先级"来决定:高优先级的元素排在队首,而低优先级的元素则排在后面.这样,优先队列的入队(Enqueue)操作就比较复杂,需要将元素根据优先级尽量排到队列前面.我们将会发现,对于下一

  • 彻底搞定堆排序:二叉堆

    目录 二叉堆 插入 删除 构建 二叉堆代码实现 总结 二叉堆 什么是二叉堆 二叉堆本质上是一种完全二叉树,它分为两个类型 最大堆:最大堆的任何一个父节点的值,都大于等于它的左.右孩子节点的值(堆顶就是整个堆的最大元素) 最小堆:最小堆的任何一个父节点的值,都小于等于它的左.右孩子节点的值(堆顶就是整个堆的最小元素) 二叉堆的根节点叫做堆顶 二叉堆的基本操作 插入节点 删除节点 构建二叉堆 这几种操作都基于堆的自我调整,所谓堆自我调整,就是把一个不符合堆的完全二叉树,调整成一个堆,下面以最小堆为例

  • Java语言实现二叉堆的打印代码分享

    二叉堆是一种特殊的堆,二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树).二叉堆有两种:最大堆和最小堆.最大堆:父结点的键值总是大于或等于任何一个子节点的键值:最小堆:父结点的键值总是小于或等于任何一个子节点的键值. 打印二叉堆:利用层级关系 我这里是先将堆排序,然后在sort里执行了打印堆的方法printAsTree() public class MaxHeap<T extends Comparable<? super T>> { private T[] data; pr

  • PHP利用二叉堆实现TopK-算法的方法详解

    前言 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证内存和速度的效率,我们可能第一个想法就是利用排序,然后截取前10或前100,而排序对于量不是特别大的时候没有任何问题,但只要量特别大是根本不可能完成这个任务的,比如在一个数组或者文本文件里有几亿个数,这样是根本无法全部读入内存的,所以利用排序解决这个问题并不是最好的,所以我们这里就用php去实现一个小顶堆来解决这个问题. 二叉堆 二叉堆是一种特殊的堆,二

  • Java实现二叉堆、大顶堆和小顶堆

    目录 什么是二叉堆 什么是大顶堆.小顶堆 建堆 程序实现 建立大顶堆 逻辑过程 程序实现 建立小顶堆 逻辑过程 程序实现 从堆顶取数据并重构大小顶堆 什么是二叉堆 二叉堆就是完全二叉树,或者是靠近完全二叉树结构的二叉树.在二叉树建树时采取前序建树就是建立的完全二叉树.也就是二叉堆.所以二叉堆的建堆过程理论上讲和前序建树一样. 什么是大顶堆.小顶堆 二叉堆本质上是一棵近完全的二叉树,那么大顶堆和小顶堆必然也是满足这个结构要求的.在此之上,大顶堆要求对于一个节点来说,它的左右节点都比它小:小顶堆要求

  • java编程实现优先队列的二叉堆代码分享

    这里主要介绍的是优先队列的二叉堆Java实现,代码如下: package practice; import edu.princeton.cs.algs4.StdRandom; public class TestMain { public static void main(String[] args) { int[] a = new int[20]; for (int i = 0; i < a.length; i++) { int temp = (int)(StdRandom.random()*1

  • Python实现查找二叉搜索树第k大的节点功能示例

    本文实例讲述了Python实现查找二叉搜索树第k大的节点功能.分享给大家供大家参考,具体如下: 题目描述 给定一个二叉搜索树,找出其中第k大的节点 就是一个中序遍历的过程,不需要额外的数组,便利到节点之后,k减一就行. 代码1 class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def __init__(self): self.k = 0 de

  • C语言每日练习之二叉堆

    目录 一.堆的概念 1.概述 2.定义 3.性质 4.作用 二.堆的存储结构 1.根结点编号 2.孩子结点编号 3.父结点编号 4.数据域 5.堆的数据结构 三.堆的常用接口 1.元素比较 2.交换元素 3.空判定 4.满判定 5.上浮操作 6.下沉操作 四.堆的创建 1.算法描述 2.动画演示 3.源码详解 五.堆元素的插入 1.算法描述 2.动画演示 3.源码详解 五.堆元素的删除 1.算法描述 2.动画演示 3.源码详解 总结 一.堆的概念 1.概述 堆是计算机科学中一类特殊的数据结构的统

随机推荐