使用python把Excel中的数据在页面中可视化

目录
  • 一. 需求
  • 二. 安装xlrd模块
  • 三.  用echart在html中表现
  • 总结

一. 需求

最近我们数据可视化的老师让我们把广州历史房价中的房价数据可视化,然后给我们发了广州历史房价.xls,然后看了一下数据确实有点小多,反正复制粘贴是有点费劲的,所以就想借用python帮我把数据修改成我一键复制的模样。

二. 安装xlrd模块

pip install xlrd

通常pip都是带有的,我们在开发工具中import xlrd就可以啦。

下面是实现切割一年每个月份的方法

import xlrd
path = r'E:\数据分析\07广州历史房价.xls'
#sheetName是你这个excel文件中的表,如Sheet1(注意大小写问题)
sheetName = 'Sheet1'
data = xlrd.open_workbook(path)
table = data.sheet_by_name(sheetName)

# 行数
rowAmount = table.nrows
# 列数
colAmount = table.ncols
# 显示第n列中所有格中的内容
datas=[]
for rowIndex in range(1,rowAmount):
    datas.append(table.cell_value(rowIndex, 1))

datas.reverse()
index1=0
index2=12
time=2009
while index2<len(datas):
    print(str(time)+"年")
    time=time+1
    # print(str(index1)+"   "+str(index2))
    print(datas[index1:index2])
    index1=index2
    index2=index2+12
print(str(time)+"年")
print(datas[index1:index2-2])

得到的数据:

三.  用echart在html中表现

在下面链接中找到要表现的样式:(记得加上echart.js)

Examples - Apache ECharts

ECharts, a powerful, interactive charting and visualization library for browser

https://echarts.apache.org/examples/zh/index.html

<!DOCTYPE html>
<html>
	<head>
		<meta charset="utf-8">
		<title>广州历史房价</title>
		<script src="echarts.js"></script>
	</head>
	<script>
	window.onload = function(){
		// 在<head>中写浮现窗口
		var a = echarts.init(document.getElementById("main"));
		var b =option = {
  title: {
    text: '广州历史房价',

  },
  tooltip: {
    trigger: 'axis'
  },
  legend: {
    data: ['2009年', '2010年', '2011年', '2012年', '2013年','2014年', '2015年', '2016年', '2017年', '2018年']
  },
  grid: {
    left: '3%',
    right: '4%',
    bottom: '3%',
    containLabel: true
  },
  toolbox: {
    feature: {
      saveAsImage: {}
    }
  },
  xAxis: {
    type: 'category',
    boundaryGap: false,
    data: ['一月', '二月', '三月', '四月', '五月', '六月', '七月','八月', '九月', '十月', '十一月','十二月']
  },
  yAxis: {
    type: 'value'
  },
  series: [
    {
      name: '2009年',
      type: 'line',
      stack: 'Total',
      data: [6991.0, 6963.0, 7305.0, 8051.0, 8191.0, 8168.0, 8431.0, 8620.0, 8927.0, 9113.0, 9318.0, 9718.0]
    },
    {
      name: '2010年',
      type: 'line',
      stack: 'Total',
      data: [9873.0, 10000.0, 10000.0, 10351.0, 10610.0, 10787.0, 10622.0, 10878.0, 11505.0, 12062.0, 12413.0, 12944.0]
    },
    {
      name: '2011年',
      type: 'line',
      stack: 'Total',
      data: [13535.0, 14114.0, 14680.0, 14998.0, 14977.0, 14938.0, 14855.0, 14654.0, 14547.0, 14521.0, 14677.0, 14762.0]
    },
    {
      name: '2012年',
      type: 'line',
      stack: 'Total',
      data: [14993.0, 15194.0, 15215.0, 15203.0, 15148.0, 15152.0, 15246.0, 15467.0, 15754.0, 15886.0, 16207.0, 16555.0]
    },
    {
      name: '2013年',
      type: 'line',
      stack: 'Total',
      data: [17003.0, 17423.0, 17665.0, 17651.0, 17304.0, 17515.0, 17759.0, 18293.0, 19011.0, 19445.0, 19589.0, 19208.0]
    },
    {
      name: '2014年',
      type: 'line',
      stack: 'Total',
      data: [18893.0, 18977.0, 19460.0, 19040.0, 18757.0, 18440.0, 17764.0, 17450.0, 17312.0, 17338.0, 18081.0, 18564.0]
    },
	{
      name: '2015年',
      type: 'line',
      stack: 'Total',
      data: [18792.0, 18851.0, 19024.0, 19417.0, 19562.0, 19902.0, 20014.0, 19997.0, 19988.0, 19921.0, 19996.0, 20016.0]
    },
	{
	  name: '2016年',
	  type: 'line',
	  stack: 'Total',
	  data: [20623.0, 20643.0, 20811.0, 21133.0, 21107.0, 21144.0, 21264.0, 21553.0, 21720.0, 22242.0, 22590.0, 22926.0]
	},
	{
	  name: '2017年',
	  type: 'line',
	  stack: 'Total',
	  data: [23744.0, 24427.0, 25131.0, 25369.0, 26061.0, 27329.0, 28196.0, 28508.0, 28814.0, 28254.0, 28009.0, 28578.0]
	},
	{
	  name: '2018年',
	  type: 'line',
	  stack: 'Total',
	  data: [28602.0, 29683.0, 30413.0, 31044.0, 31472.0, 32021.0, 32670.0, 33289.0, 33455.0, 33197.0]
	},
  ]
};

					a.setOption(b);
				}
	</script>
	<body> <!-- 在<body>处完善窗口尺寸 -->
		<div id="main" style="width: 1100px;height: 800px;"></div>
	</body>
</html>

四.  效果

总结

到此这篇关于使用python把Excel中数据在页面中可视化的文章就介绍到这了,更多相关python Excel数据可视化内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

  • 利用Python进行数据可视化常见的9种方法!超实用!

    前言 如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息. 我们今天就分享一下如何用 Python 简单便捷的完成数据可视化. 其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务. Matplotlib:基于Python的绘图库,提供完全的 2D 支持和部分 3D 图像支持.在跨平台和互动式环境中生成高质量数据时,matplotlib 会很有帮助

  • Python数据可视化之画图

    安装数据可视化模块matplotlib:pip install matplotlib 导入matplotlib模块下的pyplot 1 折线图 from matplotlib import pyplot #横坐标 year=[2010,2012,2014,2016] #纵坐标 perple=[20,40,60,100] #生成折线图:函数polt pyplot.plot(year,perple) #设置横坐标说明 pyplot.xlabel('year') #设置纵坐标说明 pyplot.yla

  • Python爬取数据并实现可视化代码解析

    这次主要是爬了京东上一双鞋的相关评论:将数据保存到excel中并可视化展示相应的信息 主要的python代码如下: 文件1 #将excel中的数据进行读取分析 import openpyxl import matplotlib.pyplot as pit #数据统计用的 wk=openpyxl.load_workbook('销售数据.xlsx') sheet=wk.active #获取活动表 #获取最大行数和最大列数 rows=sheet.max_row cols=sheet.max_colum

  • Python数据可视化:饼状图的实例讲解

    使用python实现论文里面的饼状图: 原图: python代码实现: # # 饼状图 # plot.figure(figsize=(8,8)) labels = [u'Canteen', u'Supermarket', u'Dorm', u'Others'] sizes = [73, 21, 4, 2] colors = ['red', 'yellow', 'blue', 'green'] explode = (0.05, 0, 0, 0) patches, l_text, p_text =

  • 使用python把Excel中的数据在页面中可视化

    目录 一. 需求 二. 安装xlrd模块 三.  用echart在html中表现 总结 一. 需求 最近我们数据可视化的老师让我们把广州历史房价中的房价数据可视化,然后给我们发了广州历史房价.xls,然后看了一下数据确实有点小多,反正复制粘贴是有点费劲的,所以就想借用python帮我把数据修改成我一键复制的模样. 二. 安装xlrd模块 pip install xlrd 通常pip都是带有的,我们在开发工具中import xlrd就可以啦. 下面是实现切割一年每个月份的方法 import xlr

  • python读取excel指定列数据并写入到新的excel方法

    如下所示: #encoding=utf-8 import xlrd from xlwt import * #------------------读数据--------------------------------- fileName="C:\\Users\\st\\Desktop\\test\\20170221131701.xlsx" bk=xlrd.open_workbook(fileName) shxrange=range(bk.nsheets) try: sh=bk.sheet

  • AJax 把拿到的后台数据在页面中渲染的实例

    1.先放一段ajax http://xxxxx/GCMS/dispatch/getCarTypes 这样一段URL 2.下面来使用它 ,贴代码 $(".set-value").on("tap",function(){ var html=""; $.get("http://XXXX/dispatch/getCarTypes",function(data,status){ for( var i=0;i<data.data.l

  • Android中的webview支持页面中的文件上传实例代码

    Android webview在默认情况下是不支持网页中的文件上传功能的: 如果在网页中有<input type="file" />,在android webview中访问时也会出现浏览文件的按钮 但是点击按钮之后没有反应... 那么如何能够让android的webview能够响应,这个浏览按钮呢?在网上查了很多资料,很多相同的,但都漏掉了一个地方,导致无法读取到文件的完整地址("c:\upfile\233232.jpg"),整理最终代码入下: 我们需要

  • ASP.NET下将Excel表格中的数据规则的导入数据库思路分析及实现

    今天接到新的需求,要求将Excel表格中的数据显示在页面上. 我个人分析,首先要将Excel中的数据存到数据库中,再进行页面显示,本人菜鸟级别,以前没有做过读取Excel数据,研究了一下(主要是看别人的资料),写一下实现过程,我想写几篇关于Excel的,首先是规则的Excel数据导入,再有就是不规则的Excel数据导入,还有就是根据数据生成Excel. 下面开始:将规则的Excel导入数据库 首先看一下Excel结构,如图:  这是一个简单的.规整的Excel格式,将它导入到数据库中 复制代码

  • 将Python中的数据存储到系统本地的简单方法

    有很多时候,我们会在python的运行过程中得到一些重要的变量,比如一个数据量很庞大的dict.而且,后面的某些程序也会用到这个dict,那么我们就最好把它存储到本地来,然后下次调用的时候,先读取本地的文件,导入到字典类型中,调用即可.这样就免去了重新学习这个字典的过程.那么在python中如何把数据存储到本地呢? 我们用到的是python中的pickle模块. 如下: import pickle data1 = {'a': [1, 2.0, 3, 4+6j], 'b': ('string',

  • Python Pandas中合并数据的5个函数使用详解

    目录 join 索引一致 索引不一致 merge concat 纵向拼接 横向拼接 append combine 前几天在一个群里面,看到一位朋友,说到自己的阿里面试,被问了一些关于pandas的使用.其中一个问题是:pandas中合并数据的5中方法. 今天借着这个机会,就为大家盘点一下pandas中合并数据的5个函数.但是对于每个函数,我这里不打算详细说明,具体用法大家可以参考pandas官当文档. join主要用于基于索引的横向合并拼接: merge主要用于基于指定列的横向合并拼接: con

  • Python读取Excel表格,并同时画折线图和柱状图的方法

    今日给大家分享一个Python读取Excel表格,同时采用表格中的数值画图柱状图和折线图,这里只需要几行代码便可以实. 首先我们需要安装一个Excel操作的库xlrd,这个很简单,在安装Python后直接在DOS命令下输入pip install xlrd,便可以安装成功,如果还是不行,就输入Python -m pip install xlrd.后面会附上完整的代码和截图: 这行代码就是读取本地Excel文件的: data = xlrd.open_workbook(r'C:\\Users\\ASU

  • 文本、Excel、Access数据导入SQL Server2000的方法

    如下所示: 复制代码 代码如下: "AWU","102300","ZX240-3","2609997000","2609997000","3016924000","","3091775000","","","QCR0000285","" "AYE",

  • Android平台中实现数据存储的5种方式

    本文介绍Android中的5种数据存储方式,具体内容如下 数据存储在开发中是使用最频繁的,在这里主要介绍Android平台中实现数据存储的5种方式,分别是: 1 使用SharedPreferences存储数据 2 文件存储数据 3 SQLite数据库存储数据 4 使用ContentProvider存储数据 5 网络存储数据 下面将为大家一一详细介绍.  第一种:使用SharedPreferences存储数据 SharedPreferences是Android平台上一个轻量级的存储类,主要是保存一

随机推荐