python如何获得list或numpy数组中最大元素对应的索引

获得list中最大元素的索引

aa = [1,2,3,4,5]
aa.index(max(aa))

相应的最小值使用

aa = [1,2,3,4,5]
aa.index(min(aa)) 

获得numpy数组中最大元素的索引

1.可以使用numpy的函数,argmax获得最大元素的索引,相应的获得最小值的话需要使用argmin。

aa = [1,2,3,4,5]
arr_aa = np.array(aa)
maxindex = np.argmax(arr_aa )

1.也可以将numpy转为list,然后使用list或者最大值索引的方法获得最大值。

aa = numpy.array([1,2,3,4,5])

先把aa转换为List,再求索引:

bb = aa.tolist()
bb.index(max(bb))

1.python 比较灵活,所以还可以有其他的方法,如使用where函数。
 首先我们可以得到array在全局和每行每列的最大值(最小值同理)

>>> a = np.arange(9).reshape((3,3))
>>> a
array([[0, 1, 2],
    [3, 4, 5],
    [6, 7, 8]])
>>> print(np.max(a))    #全局最大
8
>>> print(np.max(a,axis=0)) #每列最大
[6 7 8]
>>> print(np.max(a,axis=1)) #每行最大
[2 5 8]

然后用where得到最大值的索引,返回值中,前面的array对应行数,后者对应列数

>>> print(np.where(a==np.max(a)))
(array([2], dtype=int64), array([2], dtype=int64)) #表示最大值在第二行第二列
>>> print(np.where(a==np.max(a,axis=0)))
(array([2, 2, 2], dtype=int64), array([0, 1, 2], dtype=int64)) # 表示最大值分别在第二行第零列,第二行第一列,第二行第二列

如果array中有相同的最大值,where会将其位置全部给出

>>> a[1,0]=8
>>> a
array([[0, 1, 2],
    [8, 4, 5],
    [6, 7, 8]])
>>> print(np.where(a==np.max(a)))
(array([1, 2], dtype=int64), array([0, 2], dtype=int64))

参考文章
1.python 寻找list中最大元素对应的索引
2.python中找出numpy array数组的最值及其索引

到此这篇关于python如何获得list或numpy数组中最大元素对应的索引的文章就介绍到这了,更多相关python 获得list或numpy最大元素索引内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python numpy数组的索引和切片的操作方法

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 "Numeric Python". 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用Nu

  • Python 获取numpy.array索引值的实例

    举个例子: q=[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] 我想获取其中值等于7的那个值的下标,以便于用于其他计算. 如果使用np.where,如: q=np.arange(0,16,1) g=np.where(q==7) print q print g 运行结果是: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15] (array([7]),) 显然(array([7]),)中的数字7我是没法提取出来做运算的,这是一个tuple

  • python 找出list中最大或者最小几个数的索引方法

    如下所示: nums = [1,8,2,23,7,-4,18,23,24,37,2] result = map(nums.index, heapq.nlargest(3, nums)) temp=[] Inf = 0 for i in range(3): temp.append(nums.index(max(nums))) nums[nums.index(max(nums))]=Inf result.sort() temp.sort() print(result) print(temp) 如上,

  • 浅谈python已知元素,获取元素索引(numpy,pandas)

    目前搜索到的方法有: np.where('元素') 还有就是pandas的方法: df.index('元素') 但是第二个方法的问题就是会报错,嗯,这就比较尴尬了,查询了网上的解决方案,有这样的: 此外使用 df[df['列名'].isin([相应的值])] 这个命令会输出等于该值的行. 此外如果想快速找到dataframe最后几行的话,可以使用的方法是tail,可以获取若干行的值 以上这篇浅谈python已知元素,获取元素索引(numpy,pandas)就是小编分享给大家的全部内容了,希望能给

  • python 寻找list中最大元素对应的索引方法

    如下所示: aa = [1,2,3,4,5] aa.index(max(aa)) 如果aa是numpy数组: aa = numpy.array([1,2,3,4,5]) 先把aa转换为List,再求索引: bb = aa.tolist() bb.index(max(bb)) 以上这篇python 寻找list中最大元素对应的索引方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python中找出numpy array数组的最值及其索引方法

    在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where,其又是list没有的 首先我们可以得到array在全局和每行每列的最大值(最小值同理) >>> a = np.arange(9).reshape((3,3)) >>> a array([[0, 1, 2], [9, 4, 5], [6, 7, 8]]) >>&

  • 对Python中list的倒序索引和切片实例讲解

    Python中list的倒序索引和切片是非常常见和方便的操作,但由于是倒序,有时候也不太好理解或者容易搞混. >>> nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> print(nums[-1]) 9 >>> print(nums[-2:]) [8, 9] >>> print(nums[:-3]) [0, 1, 2, 3, 4, 5, 6] 例如,给定一个数组nums. 索引操作 nums[-1]

  • python如何获得list或numpy数组中最大元素对应的索引

    获得list中最大元素的索引 aa = [1,2,3,4,5] aa.index(max(aa)) 相应的最小值使用 aa = [1,2,3,4,5] aa.index(min(aa)) 获得numpy数组中最大元素的索引 1.可以使用numpy的函数,argmax获得最大元素的索引,相应的获得最小值的话需要使用argmin. aa = [1,2,3,4,5] arr_aa = np.array(aa) maxindex = np.argmax(arr_aa ) 1.也可以将numpy转为lis

  • python输出数组中指定元素的所有索引示例

    如下所示,代码为: array也可直接使用上面代码.测试如下: 以上这篇python输出数组中指定元素的所有索引示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • php数组中删除元素之重新索引的方法

    如果要在某个数组中删除一个元素,可以直接用的unset,但今天看到的东西却让我大吃一惊 复制代码 代码如下: <?php $arr = array('a','b','c','d'); unset($arr[1]); print_r($arr); ?> print_r($arr)之后,结果却不是那样的,最终结果是 Array ( [0] => a [2] => c [3] => d ) 那么怎么才能做到缺少的元素会被填补并且数组会被重新索引呢?答案是 array_splice(

  • 浅谈numpy数组中冒号和负号的含义

    在实际使用numpy时,我们常常会使用numpy数组的-1维度和":"用以调用numpy数组中的元素.也经常因为数组的维度而感到困惑. 总体来说,":"用以表示当前维度的所有子模块 "-1"用以表示当前维度所有子模块最后一个,"负号用以表示从后往前数的元素" 测试代码 import numpy as np b = np.arange(start=0, stop=24, dtype=int) print('b.shape', b

  • 对python numpy数组中冒号的使用方法详解

    python中冒号实际上有两个意思:1.默认全部选择:2. 指定范围. 下面看例子 定义数组 X=array([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]) 输出为5x4二维数组 第一种意思,默认全部选择: 如,X[:,0]就是取矩阵X的所有行的第0列的元素,X[:,1] 就是取所有行的第1列的元素 第二种意思,指定范围,注意这里含左不含右 如,X[:, m:n]即取矩阵X的所有行中的的第m到n-1列数据,含左不含右

  • python numpy数组中的复制知识解析

    这篇文章主要介绍了python numpy数组中的复制知识解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 vector = numpy.array([5, 10, 15, 20]) equal_to_ten_or_five = (vector == 10) | (vector == 5) vector[equal_to_ten_or_five] = 50 print(vector) 第一次看到这个的时候一脸懵逼,后来分析了下懂了下面记录下,

  • Python替换NumPy数组中大于某个值的所有元素实例

    我有一个2D(二维) NumPy数组,并希望用255.0替换大于或等于阈值T的所有值.据我所知,最基础的方法是: shape = arr.shape result = np.zeros(shape) for x in range(0, shape[0]): for y in range(0, shape[1]): if arr[x, y] >= T: result[x, y] = 255 有更简洁和pythonic的方式来做到这一点吗? 有没有更快(可能不那么简洁和/或不那么pythonic)的

  • Python打印输出数组中全部元素

    学习Python的人都知道数组是最常用的的数据类型,为了保证程序的正确性,需要调试程序. 因此,需要在程序中控制台中打印数组的全部元素,如果数组的容量较小,例如 只含有10个元素,采用print命令或print函数可以答应出数组中的每个元素: 如果数组的容量过大,只能打印出数组的部分元素,打印结果只包含开始部分元素和结尾部分元素,中间元素省略.省略的部分不利于程序的调试: 因此,为了方便调试程序,需要将数组中的元素全部打印出来. 1. 少量元素情况 #打印数组中的元素 import numpy

  • 用python一行代码得到数组中某个元素的个数方法

    想法由来 今天写代码过程中遇到一个需求,计算一个list中数值为1的元素的个数,其中这个list的元素数值不是为0就是为1. 一开始想到的是写个方法来计算: # 返回一个0,1数组中1的数量 def num_one(source_array): count = 0 for x in source_array: if x == 1: count += 1 return count 嗯好吧,然后觉得这是最low的方法了,就在想强大的python可不可以一行代码就做到以上的效果,然后发现真的可以. c

  • numpy中三维数组中加入元素后的位置详解

    今天做数据处理时,遇到了从三维数组中批量加入二维数组的需求.其中三维数组在深度学习的特征数据处理时经常会使用到,所以读者有必要对该小知识点做到清楚了解并掌握.现对三维数组中的元素位置结合代码做详细归纳总结,方便日后查阅和为网友答疑! 图示效果图: 直接贴代码: def test3D(): import numpy as np data_array = np.zeros((3, 5, 6), dtype=np.int) data_array[1, 2, 2] = 1 print(data_arra

随机推荐