python用TensorFlow做图像识别的实现

一、TensorFlow简介

TensorFlow是由谷歌开发的一套机器学习的工具,使用方法很简单,只需要输入训练数据位置,设定参数和优化方法等,TensorFlow就可以将优化结果显示出来,节省了很大量的编程时间,TensorFlow的功能很多很强大,这边挑选了一个比较简单实现的方法,就是利用TensorFlow的逻辑回归算法对数据库中的手写数字做识别,让机器找出规律,然后再导入新的数字让机器识别。

二、流程介绍

上图是TensorFlow的流程,可以看到一开始要先将参数初始化,然后导入训练数据,计算偏差,然后修正参数,再导入新的训练数据,不断重复,当数据量越大,理论上参数就会越准确,不过也要注意不可训练过度。

三、导入数据

数据可进入MNIST数据库 (Mixed National Institute of Standards and Technology database),这是一个开放的数据库,里面有许多免费的训练数据可以提供下载,这次我们要下载的是手写的阿拉伯数字,为什么要阿拉伯数字呢?1、因为结果少,只有十个,比较好训练 2、图片的容量小,不占空间,下面是部分的训练数据案例

TensorFlow可以直接下载MNIST上的训练数据,并将它导入使用,下面为导入数据的代码

from tensorflow.examples.tutorials.mnist import input_data
MNIST = input_data.read_data_sets("/data/mnist", one_hot=True)

四、设定参数

接下来就是在TensorFlow里设定逻辑回归的参数,我们知道回归的公式为Y=w*X+b,X为输入,Y为计算结果,w为权重参数,b为修正参数,其中w和b就是我们要训练修正的参数,但训练里要怎么判断计算结果好坏呢?就是要判断计算出来的Y和实际的Y损失值(loss)是多少,并尽量减少loss,这边我们使用softmax函数来计算,softmax函数在计算多类别分类上的表现比较好,有兴趣可以百度一下,这边就不展开说明了,下面为参数设定

X = tf.placeholder(tf.float32, [batch_size, 784], name="image")
Y = tf.placeholder(tf.float32, [batch_size, 10], name="label")

X为输入的图片,图片大小为784K,Y为实际结果,总共有十个结果(数字0-9)

w = tf.Variable(tf.random_normal(shape=[784, 10], stddev=0.01), name="weights")
b = tf.Variable(tf.zeros([1, 10]), name="bias")

w初始值为一个随机的变数,标准差为0.01,b初始值为0。

logits = tf.matmul(X, w) + b
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y)
loss = tf.reduce_sum(entropy)

TensorFlow里面已经有softmax的函数,只要把他叫出来就可以使用。

optimizer =
tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss)
init = tf.global_variables_initializer()
with tf.Session() as sess:
  sess.run(init)
  n_batches = int(MNIST.train.num_examples/batch_size)
  for i in range(n_epochs): # train the model n_epochs times
    for _ in range(n_batches):
      X_batch, Y_batch = MNIST.train.next_batch(batch_size)
      sess.run([optimizer, loss], feed_dict={X: X_batch, Y:Y_batch})

接着就是设定优化方式,这边是使用梯度降下发,然后将参数初始化,接着就运行了,这边要提一下,我们的训练方式是每次从训练数据里面抓取一个batch的数据,然后进行计算,这样可以预防过度训练,也比较可以进行事后的验证,运行完后再用下面的代码进行验证

n_batches = int(MNIST.test.num_examples/batch_size)
  total_correct_preds = 0
  for i in range(n_batches):
    X_batch, Y_batch = MNIST.test.next_batch(batch_size)
    _, loss_batch, logits_batch = sess.run([optimizer, loss, logits],
    feed_dict={X: X_batch, Y:Y_batch})
    preds = tf.nn.softmax(logits_batch)
    correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y_batch, 1))
    accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
    total_correct_preds += sess.run(accuracy)
  print ("Accuracy {0}".format(total_correct_preds/MNIST.test.num_examples))

最后shell跑出来的结果是0.916,虽然看上去还算是不错的结果,但其实准确率是很低的,因为他验证的方式是判断一个图片是否为某个数字(单输出),所以假如机器随便猜也会有0.82左右的命中几率(0.9*0.9+0.1*0.1),想要更准确的话目前想到有两个方向,一个是提高训练量和增加神经网络的层数。

到此这篇关于python用TensorFlow做图像识别的实现的文章就介绍到这了,更多相关TensorFlow 图像识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python图像处理之识别图像中的文字(实例讲解)

    ①安装PIL:pip install Pillow(之前的博客中有写过) ②安装pytesser3:pip install pytesser3 ③安装pytesseract:pip install pytesseract ④安装autopy3: 先安装wheel:pip install wheel 下载autopy3-0.51.1-cp36-cp36m-win_amd64.whl[点击打开链接] 执行命令:pip install E:\360安全浏览器下载\autopy3-0.51.1-cp36

  • python识别图像并提取文字的实现方法

    前言 python图像识别一般基础到的就是tesseract了,在爬虫中处理验证码广泛使用. 安装 安装教程网上大都差不多,Windows下确实比较麻烦,涉及到各种路径.环境变量甚至与linux不同的路径分隔符,所以这里的安装是基于Centos7. 1. 依赖安装 yum install -y automake autoconf libtool gcc gcc-c++ 2. 安装leptonica Leptonica主要用于图像处理和图像分析 原则上所有的库文件都是可以直接用yum安装的,如果想

  • 用Python进行简单图像识别(验证码)

    这是一个最简单的图像识别,将图片加载后直接利用Python的一个识别引擎进行识别 将图片中的数字通过 pytesseract.image_to_string(image)识别后将结果存入到本地的txt文件中 #-*-encoding:utf-8-*- import pytesseract from PIL import Image class GetImageDate(object): def m(self): image = Image.open(u"C:\\a.png") text

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • python实现图像识别功能

    本文实例为大家分享了python实现图像识别的具体代码,供大家参考,具体内容如下 #! /usr/bin/env python from PIL import Image import pytesseract url='img/denggao.jpeg' image=Image.open(url) #image=image.convert('RGB') # RGB image=image.convert('L') # 灰度 image.load() text=pytesseract.image_

  • python实现识别手写数字 python图像识别算法

    写在前面 这一段的内容可以说是最难的一部分之一了,因为是识别图像,所以涉及到的算法会相比之前的来说比较困难,所以我尽量会讲得清楚一点. 而且因为在编写的过程中,把前面的一些逻辑也修改了一些,将其变得更完善了,所以一切以本篇的为准.当然,如果想要直接看代码,代码全部放在我的GitHub中,所以这篇文章主要负责讲解,如需代码请自行前往GitHub. 本次大纲 上一次写到了数据库的建立,我们能够实时的将更新的训练图片存入CSV文件中.所以这次继续往下走,该轮到识别图片的内容了. 首先我们需要从文件夹中

  • 使用Python轻松完成垃圾分类(基于图像识别)

    0 环境 Python版本:3.6.8 系统版本:macOS Mojave Python Jupyter Notebook 1 引言 七月了,大家最近一定被一项新的政策给折磨的焦头烂额,那就是垃圾分类.<上海市生活垃圾管理条例>已经正式实施了,相信还是有很多的小伙伴和我一样,还没有完全搞清楚哪些应该扔在哪个类别里.感觉每天都在学习一遍垃圾分类,真令人头大. 听说一杯没有喝完的珍珠奶茶应该这么扔 首先,没喝完的奶茶水要倒在水池里 珍珠,水果肉等残渣放进湿垃圾 把杯子要丢入干垃圾 接下来是盖子,如

  • python用TensorFlow做图像识别的实现

    一.TensorFlow简介 TensorFlow是由谷歌开发的一套机器学习的工具,使用方法很简单,只需要输入训练数据位置,设定参数和优化方法等,TensorFlow就可以将优化结果显示出来,节省了很大量的编程时间,TensorFlow的功能很多很强大,这边挑选了一个比较简单实现的方法,就是利用TensorFlow的逻辑回归算法对数据库中的手写数字做识别,让机器找出规律,然后再导入新的数字让机器识别. 二.流程介绍 上图是TensorFlow的流程,可以看到一开始要先将参数初始化,然后导入训练数

  • 详解Python使用tensorflow入门指南

    TensorFlow是Google公司2015年11月开源的第二代深度学习框架,是第一代框架DistBelief的改进版本. TensorFlow支持python和c/c++语言, 可以在cpu或gpu上进行运算, 支持使用virtualenv或docker打包发布. 定义变量 为了使用tensorflow,首先我们需要导入它 import tensorflow as tf 对于符号变量,我们新建一个 x = tf.placeholder(tf.float32, [None, 784]) 这里x

  • 利用python、tensorflow、opencv、pyqt5实现人脸实时签到系统

    基于python opencv人脸识别的签到系统前言先看下效果实现的功能开始准备页面的构建功能实现代码部分总结 前言 一个基于opencv人脸识别和TensorFlow进行模型训练的人脸实时签到系统,作者某二本大学里的末流学生,写于2019/09/,python学习期间. 今年7月份开始接触python的,最近闲着无事就开始做了这个人脸识别的系统,一开始的话就想着简单的弄下,就去了百度智能云用的api接口实现的,写完以后我就想为什么我不自己写一个人脸识别签到,不去调用百度api接口,然后就诞生了

  • python之tensorflow手把手实例讲解猫狗识别实现

    目录 一,猫狗数据集数目构成 二,数据导入 三,数据集构建 四,模型搭建 五,模型训练 六,模型测试 作为tensorflow初学的大三学生,本次课程作业的使用猫狗数据集做一个二分类模型. 一,猫狗数据集数目构成 train cats:1000 ,dogs:1000 test cats: 500,dogs:500 validation cats:500,dogs:500 二,数据导入 train_dir = 'Data/train' test_dir = 'Data/test' validati

  • python之tensorflow手把手实例讲解斑马线识别实现

    一,斑马线的数据集 数据集的构成: test train zebra corssing:56 zebra corssing:168 other:54 other:164 二,代码部分 1.导包 import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator import numpy as np import matplotlib.pyplot as plt import ker

  • Python神经网络TensorFlow基于CNN卷积识别手写数字

    目录 基础理论 一.训练CNN卷积神经网络 1.载入数据 2.改变数据维度 3.归一化 4.独热编码 5.搭建CNN卷积神经网络 5-1.第一层:第一个卷积层 5-2.第二层:第二个卷积层 5-3.扁平化 5-4.第三层:第一个全连接层 5-5.第四层:第二个全连接层(输出层) 6.编译 7.训练 8.保存模型 代码 二.识别自己的手写数字(图像) 1.载入数据 2.载入训练好的模型 3.载入自己写的数字图片并设置大小 4.转灰度图 5.转黑底白字.数据归一化 6.转四维数据 7.预测 8.显示

  • python神经网络TensorFlow简介常用基本操作教程

    目录 要将深度学习更快且更便捷地应用于新的问题中,选择一款深度学习工具是必不可少的步骤. TensorFlow是谷歌于2015年11月9日正式开源的计算框架.TensorFlow计算框架可以很好地支持深度学习的各种算法. TensorFlow很好地兼容了学术研究和工业生产的不同需求. 一方面,TensorFlow的灵活性使得研究人员能够利用它快速实现新的模型设计: 另一方面,TensorFlow强大的分布式支持,对工业界在海量数据集上进行的模型训练也至关重要.作为谷歌开源的深度学习框架,Tens

  • Python OpenCV机器学习之图像识别详解

    目录 背景 一.人脸识别 二.车牌识别 三.DNN图像分类 背景 OpenCV中也提供了一些机器学习的方法,例如DNN:本篇将简单介绍一下机器学习的一些应用,对比传统和前沿的算法,能从其中看出优劣: 一.人脸识别 主要有以下两种实现方法: 1.哈尔(Haar)级联法:专门解决人脸识别而推出的传统算法: 实现步骤: 创建Haar级联器: 导入图片并将其灰度化: 调用函数接口进行人脸识别: 函数原型: detectMultiScale(img,scaleFactor,minNeighbors) sc

  • Python基于ImageAI实现图像识别详解

    目录 背景简介 图像预测 算法引入 目标检测 图像目标检测 视频目标检测 背景简介 ImageAI是一个面向计算机视觉编程的Python库,支持最先进的机器学习算法.主要图像预测,物体检测,视频对象检测与跟踪等多个应用领域.利用ImageAI,开发人员可用很少的代码构建出具有包含深度学习和计算机视觉功能的应用系统. ImageAI目前支持在ImageNet数据集上对多种不同机器算法进行图像预测和训练,ImageNet数据集项目始于2006年,它是一项持续的研究工作,旨在为世界各地的研究人员提供易

  • python生成tensorflow输入输出的图像格式的方法

    TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow:也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取.下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出. import cv2 import numpy as np import h5py height = 460 width = 345 w

随机推荐