Python matplotlib数据可视化图绘制

目录
  • 前言
  • 1.折线图
  • 2.直方图
  • 3.箱线图
  • 4.柱状图
  • 5.饼图
  • 6.散点图

前言

导入绘图库:

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os

读取数据(数据来源是一个EXCLE表格,这里演示的是如何将数据可视化出来)

os.chdir(r'E:\jupyter\数据挖掘\数据与代码')
df = pd.read_csv('air_data.csv',na_values= '--') 

1.折线图

  • plt.plot(x,y,ls=,lw=,c=,marker=,markersize=,markeredgecolor=,markerfacecolor, label=)
  • x: x轴上的数值
  • y: y轴上的数值
  • ls- -函数线条风格(=‘-’ 实线, ‘–’ 虚线 ,‘-.’ 点划线 ,‘:’ 实点线)
  • lw: 线条宽度
  • c: 颜色
  • marker: 线条上点的形状, 常用为’o’,即圆点形状
  • markersize: 线条上点的形状
  • markeredgecolor: 点的边框色
  • markerfacecolor: 点的填充色
# 绘制观察窗口内的飞行次数和观测窗口内的总飞行里程数
# 支持中文显示
plt.rcParams['font.sans-serif']=['SimHei']# 字体
plt.rcParams['axes.unicode_minus']=False
x=np.linspace(0,10,100)
y=np.sin(x)
plt.plot(x,y,ls='-',lw=2,marker='o',markersize=5,c='red',markeredgecolor='black',markerfacecolor='lightskyblue')
plt.show()

2.直方图

  • hist:数据
  • bins:组距
  • color:填充色
  • edgecolor:边框色
  • density:是否绘制成概率密度形式
  • xlabel:横坐标
  • ylabel:纵坐标
  • labelpad/pad:离坐标轴的距离
# 绘制年龄的分布情况
plt.hist(x=df['AGE'],bins=30,color='r',edgecolor='black',density=True) # density=True 代表是否绘制概率密度形式
plt.xlabel('客户年龄',fontsize=15,labelpad=20)
plt.ylabel('频数',fontsize=15,labelpad=20)
plt.title('年龄分布图',fontsize=15,pad=20)
plt.show()

3.箱线图

  • plt.boxplot(x,notch,sym,vert,whis,position,widths,patch_artist,meanline,showmeans, boxprops,labels,flierprops)
  • x: 数据
  • 宽度:宽度
  • patch_artist: 是否填充箱体颜色
  • meanline:是否显示均值
  • showmeans: 是否显示均值
  • meanprops;设置均值属性,如点的大小,颜色等
  • medianprops:设置中位数的属性,如线的类型,大小等
  • showfliers: 是否表示有异常值
  • boxprops:设置箱体的属性,边框色和填充色
  • cappops: 设置箱线顶端和末端线条的属性,如颜色,粗细等
age=df[df['AGE'].notnull()]['AGE'] # 剔除年龄的空值
plt.boxplot(x=age,patch_artist=True,boxprops={'color':'red'})
plt.show()

4.柱状图

# 将字符型数据转换date格式
df['FFP_DATE']=pd.to_datetime(df['FFP_DATE'],format='%Y/%m/%d',errors='coerce') # errors 避免报错
data=df['FFP_DATE'].dt.year.value_counts()
x_data=data.index
y_data=data.values
plt.bar(x=x_data,height=y_data,align='center',color='y',tick_label=x_data)
plt.title('不同年份的会员数量',pad=5)
plt.show()

5.饼图

autopct:设置百分比的格式

data=df['GENDER'].value_counts()
# 绘制饼图
plt.pie(x=data.values,labels=data.index,colors=['lightskyblue','lightcoral'],autopct='%.1f%%')
plt.show()

6.散点图

# 飞行次数与总飞行公里数的关系
plt.scatter(x=df['FLIGHT_COUNT'],y=df['SEG_KM_SUM'],color='steelblue',marker='o',s=100)
plt.title('飞行次数与总飞行公里数的关系')
plt.show()

到此这篇关于Python matplotlib数据可视化图绘制的文章就介绍到这了,更多相关Python matplotlib 图绘制内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据可视化教程之Matplotlib实现各种图表实例

    前言 数据分析就是将数据以各种图表的形式展现给领导,供领导做决策用,因此熟练掌握饼图.柱状图.线图等图表制作是一个数据分析师必备的技能.Python有两个比较出色的图表制作框架,分别是Matplotlib和Pyechart.本文主要讲述使用Matplotlib制作各种数据图表. Matplotlib是最流行的用于绘制2D数据图表的Python库,能够在各种平台上使用,可以绘制散点图.柱状图.饼图等. 1.柱状图 是一种以长方形或长方体的高度为变量的表达图形的统计报告图,由一系列高度不等的纵向条纹

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

  • Python数据可视化之使用matplotlib绘制简单图表

    目录 一.绘制折线图 二.绘制柱形图或堆积图形 三.绘制条形图或堆积条形图 四.绘制堆积面积图 五.绘制直方图 六.绘制饼图或者圆环图 七.绘制散点图或气泡图 八.绘制箱形图 九.绘制雷达图 十.绘制误差棒图 总结 一.绘制折线图 使用plot()绘制折线图 常用的参数: x:表示x轴的数据 y:表示y轴的数据 fmt:表示快速设置条样式的格式字符串. label:表示应用于图例的标签文本. plot()会返回一个包含Line2D类对象(代表线条)的列表. plot()函数的语法格式: plot

  • 通过python的matplotlib包将Tensorflow数据进行可视化的方法

    使用matplotlib中的一些函数将tensorflow中的数据可视化,更加便于分析 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) bi

  • Python数据分析应用之Matplotlib数据可视化详情

    目录 简述 掌握绘图基础语法与基本参数 掌握pyplot基础语法 pyplot中的基础绘图语法 包含子图的基础语法 调节线条的rc参数 调节字体的rc参数 分析特征间的关系 绘制散点图 绘制2000-2017年个季度过敏生产总值散点图 绘制2000-2017年各季度国民生产总值散点图 绘制折线图 绘制2000-2017年各季度过敏生产总值折线图 2000~ 2017年各季度国民生产总值点线图 2000~ 2017年各季度国民生产总值折线散点图 任务实现 任务1 任务2 分析特征内部数据分布与分散

  • Python 数据可视化之Matplotlib详解

    目录 使用的数据库 tips 数据库 Matplotlib 散点图 折线图 条形图 直方图 总结 在深入研究这些库之前,首先,我们需要一个数据库来绘制数据.我们将在本完整教程中使用 tips database.让我们讨论一下这个数据库的简介. 使用的数据库 tips 数据库 tips 数据库是20世纪90年代初期顾客在餐厅的两个半月的小费记录.它包含 6 列,例如 total_bill.tip.sex.smoker.day.time.size. 您可以从这里下载 tips 数据库. 例子: im

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • Python matplotlib数据可视化图绘制

    目录 前言 1.折线图 2.直方图 3.箱线图 4.柱状图 5.饼图 6.散点图 前言 导入绘图库: import matplotlib.pyplot as plt import numpy as np import pandas as pd import os 读取数据(数据来源是一个EXCLE表格,这里演示的是如何将数据可视化出来) os.chdir(r'E:\jupyter\数据挖掘\数据与代码') df = pd.read_csv('air_data.csv',na_values= '-

  • python Matplotlib数据可视化(2):详解三大容器对象与常用设置

    上一篇博客中说到,matplotlib中所有画图元素(artist)分为两类:基本型和容器型.容器型元素包括三种:figure.axes.axis.一次画图的必经流程就是先创建好figure实例,接着由figure去创建一个或者多个axes,然后通过axes实例调用各种方法来添加各种基本型元素,最后通过axes实例本身的各种方法亦或者通过axes获取axis实例实现对各种元素的细节操控. 本篇博客继续上一节的内容,展开介绍三大容器元素创建即通过三大容器可以完成的常用设置. 1 figure 1.

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • python Matplotlib数据可视化(1):简单入门

    1 matplot入门指南 matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求.但功能丰富从另一方面来说也意味着概念.方法.参数繁多,让许多新手望而却步. 据我了解,大部分人在对matplotlib接触不深时都是边画图边百度,诸如这类的问题,我想大家都似曾相识:Python如何画散点图,matplotlib怎么将坐标轴标签旋转45度,怎么设置图例字体大小等等.无论针对哪一个问题,往往都有多种解决方法,搜索

  • Python数据分析之Matplotlib数据可视化

    目录 1.前言 2.Matplotlib概念 3.Matplotlib.pyplot基本使用 3.数据展示 3.1如何选择展示方式 3.2绘制折线图 3.3绘制柱状图 3.3.1普通柱状图 3.3.2堆叠柱状图 3.3.3分组柱状图 3.3.4饼图 4.绘制子图 1.前言 数据展示,即数据可视化,是数据分析的第五个步骤,大部分人对图形敏感度高于数字,好的数据展示方式能让人快速发现问题或规律,找到数据背后隐藏的价值. 2.Matplotlib概念 Matplotlib 是 Python 中常用的

  • python数据可视化Seaborn绘制山脊图

    目录 1. 引言 2. 举个栗子 3.山脊图 4.扩展 5.结论 1. 引言 山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴. 山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现.观察上图,我们给其起名叫Ridge plot是非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division乐队在如下专辑封面上采用了这种可视化形式. 2. 举个栗子 在介绍完山脊图

  • Python数据可视化之绘制柱状图和条形图

    一.实验目的: 1.掌握Python中柱状图.条形图绘图函数的使用 2.利用上述绘图函数实现数据可视化 二.实验内容: 1.练习python中柱状图.条形图绘图函数的用法,掌握相关参数的概念 2.根据步骤一绘图函数要求,处理实验数据 3.根据步骤二得到的实验数据,绘制柱状图.条形图 4.练习如何通过调整参数使图片呈现不同效果,例如颜色.图例位置.背景网格.坐标轴刻度和标记等 三.实验过程(附结果截图): 1. 练习python中柱状图.条形图绘图函数的用法,掌握相关参数的概念 (1)练习绘制条形

  • Python+matplotlib实现堆叠图的绘制

    目录 一.水平堆叠图 二.波浪形堆叠图 三.加上数据标签 注:本文的所有数据请移步—— 参考数据 一.水平堆叠图 堆叠图其实就是柱状图的一种特殊形式 from matplotlib import pyplot as plt plt.style.use('seaborn') plt.figure(figsize=(15,9)) plt.rcParams.update({'font.family': "Microsoft YaHei"}) plt.title("中国票房2021T

  • Python matplotlib实现折线图的绘制

    目录 一.版本 二.图表主题设置 三.一次函数 四.多个一次函数 五.填充折线图 官网: https://matplotlib.org 一.版本 # 01 matplotlib安装情况 import matplotlib matplotlib.__version__ 二.图表主题设置 请点击:图表主题设置 三.一次函数 import numpy as np from matplotlib import pyplot as plt # 如何使用中文标题 plt.rcParams['font.san

随机推荐