Python深度学习之图像标签标注软件labelme详解

前言

labelme是一个非常好用的免费的标注软件,博主看了很多其他的博客,有的直接是翻译稿,有的不全面。对于新手入门还是有点困难。因此,本文的主要是详细介绍labelme该如何使用。

一、labelme是什么?

labelme是图形图像注释工具,它是用Python编写的,并将Qt用于其图形界面。说直白点,它是有界面的, 像软件一样,可以交互,但是它又是由命令行启动的,比软件的使用稍微麻烦点。其界面如下图:

它的功能很多,包括:

  • 对图像进行多边形,矩形,圆形,多段线,线段,点形式的标注(可用于目标检-测,图像分割等任务)。
  • 对图像进行进行 flag 形式的标注(可用于图像分类 和 清理 任务)。
  • 视频标注
  • 生成 VOC 格式的数据集(for semantic / instance segmentation)
  • 生成 COCO 格式的数据集(for instance segmentation)

二、快速安装使用

安装教程都是参考的labelme github。

2.1 windows安装

官网步骤如下:

# python3
conda create --name=labelme python=3.6
source activate labelme
# conda install -c conda-forge pyside2
# conda install pyqt
# pip install pyqt5  # pyqt5 can be installed via pip on python3
pip install labelme
# or you can install everything by conda command
# conda install labelme -c conda-forge

1.为labelme创建一个conda环境,命名为lableme

2.激活该环境

windows用命令activate labelme 或者 conda activate labelme

很少用windows, 说的不对请指正。

其实在这一步中,我遇到了一个问题

C:\Windows\system32> conda activate labelme

CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'.
To initialize your shell, run

    $ conda init <SHELL_NAME>

Currently supported shells are:
 - bash
 - fish
 - tcsh
 - xonsh
 - zsh
 - powershell

See 'conda init --help' for more information and options.

IMPORTANT: You may need to close and restart your shell after running 'conda init'.

初始化conda啥的,不是很懂,最后通过博客解决

我用的第一种方法

  • 首先查看conda env 的地址

  • 我的在D盘,所以先切换到D盘
  • 命令行输入 conda.bat activate anaconda\envs\labelme(注意和原博客不一样)

  • 再激活就正常了

3 安装pyqt

前言里讲过labelme是基于Qt的,所以必须安装

conda/pip install pyqt

4 pip install labelme

2.2 linux安装

# Ubuntu 14.04 / Ubuntu 16.04
# Python2
# sudo apt-get install python-qt4  # PyQt4
sudo apt-get install python-pyqt5  # PyQt5
sudo pip install labelme
# Python3
sudo apt-get install python3-pyqt5  # PyQt5
sudo pip3 install labelme

# or install standalone executable from:
# https://github.com/wkentaro/labelme/releases

注意:使用如上安装前,同winsows一样,需要先创建labelme的conda环境。

2.3 macos安装

# macOS Sierra
brew install pyqt  # maybe pyqt5 我用的pip安装
pip install labelme  # both python2/3 should work

# or install standalone executable/app from:
# https://github.com/wkentaro/labelme/releases

说明:这三种系统我都成功安装过,放心吧~

安装成功的哑子

有如下这些包

下次使用,命令行输入labelme就可以打开软件啦。严谨的来说,它是一个用pyqt5编写的GUI界面。

三、界面说明

图上看到,这个界面是非常简洁的。

接下来具体讲讲如何使用。医学图像分析,我主要是研究分类和分割,所以重点讲解如何标注分类标签和分割标签。

四、为图像创建类标签

4.1 参数介绍

使用labelme --help会出来labelme的使用方法,它包括如下参数

我们解释几个重要的参数设置

  • –output:标注文件存放位置。如果给的参数是以.json结尾,则会向该文件写入一个标签。也就意味着如果使用.json指定位置,则只能对一个图像进行注释。如果位置不是以.json结尾,程序将假定它是一个目录。注释将以与在其上进行注释的图像相对应的名称存储在此目录中。
  • –Flags: 为图像创建分类标签,多分类用逗号隔开。
  • –nosortlabels: 是否对标签进行排序

举例:

命令行输入 labelme image1.png --output image1.json --flags 0,1

其中,image1.png是图像的地址,而不是名字。注意区别,因为我现在的路径在图像存放的当前文件夹,所以输入名字就可以直接找到该图像。如果你当前路径不在图像存放的文件夹,你需要给出图像的完整路径,如F:\labelmeImage\image1.png
–output image1.json 就是把打标签的结果存放在image1.json这个文件里。因为我是对单一图像打标签,所以是以.json结尾。如果是对一个文件夹进行打标签,那这里就不要以.json结尾,直接输入你想存放的文件夹就行。
–flags: 描述你分类的标签是什么,0,1表示分两类。也可以写成多类,0,1,2,3,4.也可以用其他字符,如 negative,positive, 或者cat, dog。等等~

4.2 文件夹所有文件创建分类标签

命令行输入labeme 并且给定分类标签。
打开图上右边界面后,导入文件夹,就可以点图像,对它进行标注。标注完一个,需要对其进行保存,才能打第二个图像的标签。这里没有给定输出位置,就会默认保存在图像这个文件夹,并且名字和图像的名字一样,并以.json结尾。

4.3 为文件夹所有文件创建分割标签

创建分割标签主要用到多边形工具, 把需要的区域框出来就好了。
实验数据来自labelme github: labelme/tree/master/examples/semantic_segmentation


五、大概步骤

1.运行labelme后,打开文件夹

2.使用多边形工具勾勒目标

3.勾勒完成后创建标签

4.微调边框。点击编辑多边形,有很多操作。如图上所示

5.最后存储

以上是简单的演示,官方做的实验如下:

首先下载semantic_segmentation 这个文件夹。

注意:以下实验都是在该文件夹下打开的终端

标注文件

labelme data_annotated --labels labels.txt --nodata --validatelabel exact --config ‘{shift_auto_shape_color: -2}'

作者已经标注好了,我们就打开看看。

标签格式转换

由于标注好的文件是json格式,我们将其转化成图片格式或者其他格式。使用作者给的代码labelme2voc.py。主要转化的格式有: 类名字文件,原始图像的jpeg格式,分割图像的npy格式,png格式, 以及将分割图像叠在原始图像上的jpg格式。

作者给的命令: ./labelme2voc.py data_annotated data_dataset_voc --labels labels.txt

但是运行时会有报错,修改成如下运行:

python labelme2voc.py data_annotated data_dataset_voc --labels labels.txt

针对报错:如果命令行不好修改代码,建议直接修改这个Python文件里面的参数配置,再运行都可以。

六、 其他问题

6.1 如何快速查看分割的json文件

labelme_draw_json 2011_000003.json

6.2 json 转 png

labelme_json_to_dataset apc2016_obj3.json -o apc2016_obj3_json

apc2016_obj3.json: 待转化的json文件,

apc2016_obj3_json: 转化后文件保存地址

一共会生成4个文件:

img.png: Image file.

label.png: uint8 label file.

label_viz.png: Visualization of label.png.

label_names.txt: Label names for values in label.png.

这和第4小节讲的格式转化差不多,4小节的python文件是可以根据自己需要随便改设置的,而这个内置方法是不允许改动的。

到此这篇关于Python深度学习之图像标签标注软件labelme详解的文章就介绍到这了,更多相关Python图像标签标注软件labelme内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python绘制三角函数图(sin\cos\tan)并标注特定范围的例子

    根据我们指定的条件检索函数中的元素 import matplotlib.pyplot as plt import numpy as np a = np.linspace(0, 2 * np.pi, 50) b = np.sin(a) plt.plot(a,b) #生成一个正弦函数图 mask = b >= 0 plt.plot(a[mask], b[mask], 'bo') #符合条件的标注蓝色圆点 mask = (b >= 0) & (a <= np.pi / 2) plt.p

  • python画图——实现在图上标注上具体数值的方法

    比如当前的表格数据是 df['resultRate'].plot(style='-.bo') plt.grid(axis='y') #设置数字标签** for a,b in zip(df['num'],df['resultRate']): plt.text(a, b+0.001, '%.4f' % b, ha='center', va= 'bottom',fontsize=9) plt.show() 结果如图 以上这篇python画图--实现在图上标注上具体数值的方法就是小编分享给大家的全部内容

  • Python tkinter实现图片标注功能(完整代码)

    .tkinter tkinter是Python下面向tk的图形界面接口库,可以方便地进行图形界面设计和交互操作编程.tkinter的优点是简单易用.与Python的结合度好.tkinter在Python 3.x下默认集成,不需要额外的安装操作:不足之处为缺少合适的可视化界面设计工具,需要通过代码来完成窗口设计和元素布局. Python tkinter实现图片标注代码,代码如下所述: #!/usr/bin/python # -*- coding: UTF-8 -*- import os impor

  • Python编写一个验证码图片数据标注GUI程序附源码

    做验证码图片的识别,不论是使用传统的ORC技术,还是使用统计机器学习或者是使用深度学习神经网络,都少不了从网络上采集大量相关的验证码图片做数据集样本来进行训练. 采集验证码图片,可以直接使用Python进行批量下载,下载完之后,就需要对下载下来的验证码图片进行标注.一般情况下,一个验证码图片的文件名就是图片中验证码的实际字符串. 在不借助工具的情况下,我们对验证码图片进行上述标注的流程是: 1.打开图片所在的文件夹: 2.选择一个图片: 3.鼠标右键重命名: 4.输入正确的字符串: 5.保存 州

  • Python+pyplot绘制带文本标注的柱状图方法

    如下所示: import numpy as np import matplotlib.pyplot as plt # 生成测试数据 x = np.linspace(0, 10, 10) y = 11-x # 绘制柱状图 plt.bar(x, y) # 循环,为每个柱形添加文本标注 # 居中对齐 for xx, yy in zip(x,y): plt.text(xx, yy+0.1, str(yy), ha='center') # 显示图形 plt.show() 运行效果: 以上这篇Python+

  • python实现在函数图像上添加文字和标注的方法

    如下所示: import matplotlib.pyplot as plt import numpy as np from matplotlib import font_manager #先确定字体,以免无法识别汉字 my_font = font_manager.FontProperties(fname= "C:/Windows/Fonts/msyh.ttc") X=np.linspace(-np.pi,np.pi,100) plt.figure(figsize=(6,5)) Y_x2

  • Python 给定的经纬度标注在地图上的实现方法

    博主最近发现了python中一个好玩的包叫basemap,使用这个包可以绘制地图.值得说一下的是,basemap还没有pip检索,因此不能直接使用pip install basemap,来安装这个包.所以需要自己把下面两个包自行下载,然后在该目录下使用pip安装. pyproj-1.9.5.1-cp36-cp36m-win_amd64.whl basemap-1.1.0-cp36-cp36m-win_amd64.whl 先上个效果图,可以发现这个工具包还是很强大的,下面介绍下怎么在地图上标注出经

  • python实现简单图片物体标注工具

    本文实例为大家分享了python实现简单图片物体标注工具的具体代码,供大家参考,具体内容如下 # coding: utf-8 """ 物体检测标注小工具 基本思路: 对要标注的图像建立一个窗口循环,然后每次循环的时候对图像进行一次复制, 鼠标在画面上画框的操作.画好的框的相关信息在全局变量中保存, 并且在每个循环中根据这些信息,在复制的图像上重新画一遍,然后显示这份复制的图像. 简化的设计过程: 1.输入是一个文件夹的路径,包含了所需标注物体框的图片. 如果图片中标注了物体,

  • python中matplotlib实现随鼠标滑动自动标注代码

    Python+matplotlib进行鼠标交互,实现动态标注,数据可视化显示,鼠标划过时画一条竖线并使用标签来显示当前值. Python3.6.5,代码示例: import matplotlib.pyplot as plt import numpy as np def Show(y): #参数为一个list len_y = len(y) x = range(len_y) _y = [y[-1]]*len_y fig = plt.figure(figsize=(960/72,360/72)) ax

  • python Matplotlib基础--如何添加文本和标注

    创建一个优秀的可视化图表的关键在于引导读者,让他们能理解图表所讲述的故事.在一些情况下,这个故事可以通过纯图像的方式表达,不需要额外添加文字,但是在另外一些情况中,图表需要文字的提示和标签才能将故事讲好.也许标注最基本的类型就是图表的标签和标题,但是其中的选项参数却有很多.让我们在本节中使用一些数据来创建可视化图表并标注这些图表来表达这些有趣的信息.首先还是需要将要用到的模块和包导入Pycharm: import matplotlib.pyplot as plt import matplotli

  • 基于Python第三方插件实现西游记章节标注汉语拼音的方法

    起因很单纯,就是给我1年级小豆包的女儿标注三国和西游章节的汉语拼音,我女儿每天都朗读 ,结果有很多字不认识,我爱人居然让我给标记不认识的完了手动注音......我勒个去......身为程序员的我怎么能忘记用程序实现呢,特别是咱也会点Python万能语言.哈哈!列举一下使用的技术. 语言:Python3.7 插件:pypinyin0.37.0  和 openpyxl 3.0.3 开发工具:pycharm 社区版 使用openpyxl操作execl的教程多的你无法想. 使用pypinyin将汉字转换

  • 利用python和百度地图API实现数据地图标注的方法

    如题,先上效果图: 主要分为两大步骤 使用python语句,通过百度地图API,对已知的地名抓取经纬度 使用百度地图API官网的html例程,修改数据部分,实现呈现效果 一.使用python语句,通过百度地图API,获取经纬度读取文件信息 import pandas as pd data = pd.read_excel('test_baidu.xlsx') data 图中可以看出,原始数据并没有经纬度. 2. 构建抓取经纬度函数 import json from urllib.request i

随机推荐