Python光学仿真之对光的干涉理解学习

光的干涉

干涉即两束光在叠加过程中出现的强度周期性变化情况,其最简单的案例即为杨氏双缝干涉。

如图所示,光从 S S S点发出,通过两个狭缝 S 1 , S 2 S_1,S_2 S1​,S2​,最终汇聚在右侧的干涉屏上,在不同位置处将会产生不同的相位差。

import numpy as np
import matplotlib.pyplot as plt
#两束光叠加
waveAdd = lambda I1,I2,theta : I1+I2+2*np.sqrt(I1*I2)*np.cos(theta)
#同一束光经过小孔之后的光程差,dSlit为小孔间距,dWave为波长
#point为衍射屏上某点,theta为衍射屏相对小孔所在直线倾角
def interSlit(dSlit,point=(1,1,1),n=1,dWave=1.06e-6):
    pVar = sum(np.array(point)**2) + 0.25*dSlit**2
    delt = 2*np.pi*n/dWave*(
        np.sqrt(pVar+point[0]*dSlit)-
        np.sqrt(pVar-point[0]*dSlit))
    return delt
#杨氏干涉,只考虑x方向
#dSlit:小孔间距;dScreen:衍射屏距离
#nGrid:网格个数;dGrid:网格间距
def interYang(dSlit=1e-3,dScreen=1,n=1,I1=1,I2=1,
              dWave=1.06e-6,nGrid=500,dGrid=1e-5):
    xAxis = np.arange(-nGrid,nGrid+1)*dGrid
    I = [waveAdd(I1,I2,interSlit(
            dSlit,(x,0,dScreen),n,dWave))
            for x in xAxis]
    plt.plot(xAxis,I)
    plt.show()

得到的衍射强度图为

双缝干涉是一个非常实用的模型,可以应用到许多光学装置中,例如Fresnel双面镜,Fresnel双棱镜,Lloyds镜,Billet剖开透镜等等。其中Frenel双面镜如图所示

光源入射到双面镜之后在镜后产生了两个像点 P , Q 二者相当于一对小孔,于是可以在右侧的干涉屏上产生干涉。

其仿真过程与杨氏干涉只差一个小孔的转换,图像亦如出一辙。

#alpha为双镜锐角,dSA为光源到劈点距离,dScreen为S像点连线到干涉屏距离
def lensFresnel(alpha=0.1,dSA=1e-3,dScreen=1,
                n=1,I1=1,I2=1,dWave=1.06e-6,
                nGrid=500,dGrid=1e-4):
    dSlit = 2*dSA*np.sin(alpha)
    interYang(dSlit,dScreen,n,I1,I2,dWave,nGrid,dGrid)

以上就是Python光学仿真之对光的干涉理解学习的详细内容,更多关于Python理解光的干涉的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python基于高斯消元法计算线性方程组示例

    本文实例讲述了Python基于高斯消元法计算线性方程组.分享给大家供大家参考,具体如下: #!/usr/bin/env python # coding=utf-8 # 以上的信息随自己的需要改动吧 def print_matrix( info, m ): # 输出矩阵 i = 0; j = 0; l = len(m) print info for i in range( 0, len( m ) ): for j in range( 0, len( m[i] ) ): if( j == l ):

  • Python光学仿真从Maxwell方程组到波动方程矢量算法理解学习

    Maxwell方程组是十九世纪最伟大的公式,代表了传统物理学人对公式美学的孜孜追求,也影响了无数后来者的物理美学品味. 回顾历史,当1864年,Maxwell发出那篇著名的<电磁场的动力学理论>时,实则列出了二十个公式,以总结前人的物理学成果,我们将分量公式合并为矢量,可以得到八个式子,即 以上符号分别表示 二十年后,Heaviside对这二十个公式进行重新编排,得到了我们熟悉的形式,并将其命名为麦克斯韦方程组: 对上式中左侧两个旋度公式再取旋度,得到 其中, ∇ E = 0,所以可得到波动方

  • Python光学仿真实现波长与颜色之间对应关系示例解析

    目录 光的颜色 python实现为 绘制光谱 光的颜色 与其说颜色是光的一种属性,不如说是人眼对可见光频率范围内的一种感应,是人眼的一种属性.而人眼对光频的感应包括三个方面,即明度.色调和饱和度. 其中, 明度与光强有关 色调反应的是光的频率信息 饱和度表示图像上的颜色与光谱色的接近程度 当不考虑色调.饱和度为0的时候,只考虑明度,则色彩感消失,就是所谓的黑白图像,或者更严格地说是灰度图像. 色调与饱和度虽然反应色光的频率信息,但表现的是人眼对光的反馈特性,与光的频率是不同的物理量.其与光的频率

  • Python光学仿真学习衍射算法初步理解

    对衍射最经典的解释是Huygens-Fresnel原理,Huygens认为波阵面上每一点都会成为新的波源,这些子波源的相互干涉就形成了衍射.这显然是一种离散的观点,仿佛是专门为程序员准备的一样. 假设一束光打在一个方形孔上,这个方形孔被细分成 n×n个网格,那么每个网格都相当于是一个小孔,而这些小孔的互相干涉,即为衍射.随着网格不断被细分,最终可以逼近真实的衍射情形.那么,假设矩孔处为等相位面,其网格坐标为  (i,j),到衍射屏距离为 d d d,那么对于衍射屏上任意一点P(x,y),其光强为

  • Python光学仿真光的偏振编程理解学习

    目录 光的偏振 光的偏振 由于光波是横波,所以对于任意一个光波,其振幅方向与传播方向在一个固定的平面内.换言之,一束光波可以存在振幅方向不同的一群光波,对于其中一个光波而言,其振幅方向即为偏振方向. 可以画出其示意图 #偏振光演示 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D as axd def polarShow(): z = np.arange(0,5,0

  • Python光学仿真学习处理高斯光束分布图像

    目录 通过python处理光斑图像 1 相关包与图像读取 2 图像截取 3显示强度 4数据拟合 问题 通过python处理光斑图像 1 相关包与图像读取 首先需要科学计算必备包numpy和画图包matplotlib.pyplot,我们通过后者进行图像数据的读取. plt.imread读取图片之后为数据格式为numpy数组,可以通过成员函数astype将整型数据变成浮点型,有利于后期处理. plt.imshow将img的数据加载到窗口,plt.show()显示绘图窗口,默认显示为伪彩图. pyth

  • Python光学仿真之对光的干涉理解学习

    光的干涉 干涉即两束光在叠加过程中出现的强度周期性变化情况,其最简单的案例即为杨氏双缝干涉. 如图所示,光从 S S S点发出,通过两个狭缝 S 1 , S 2 S_1,S_2 S1​,S2​,最终汇聚在右侧的干涉屏上,在不同位置处将会产生不同的相位差. import numpy as np import matplotlib.pyplot as plt #两束光叠加 waveAdd = lambda I1,I2,theta : I1+I2+2*np.sqrt(I1*I2)*np.cos(the

  • python光学仿真相速度和群速度计算理解学习

    目录 波动模型 相速度 群速度 从编程的角度来说,波动光学在某些情况下可以简单地理解为在光线模型的基础上,引入一个相位项. 波动模型 一般来说,三个特征可以确定空间中的波场:频率.振幅和相位,故光波场可表示为: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D z = np.arange(15,200)*10 #单位为nm x = np.arange(15,200)

  • Python光学仿真理解Jones矩阵学习

    目录 Jones向量 Jones矩阵 Jones矩阵的表示 Jones向量 假设光波沿z轴传播,那么其三个方向的电场分量可以表示为 Jones矩阵 能够保证二维列向量形状不变的运算有无穷多种,但最符合我们直觉的一定是 2 × 2矩阵.好在这种矩阵已经可以提供足够多的运算,从而满足我们描述偏振变化的需求. 光在通过波片之后,会在不同方向产生差异性的相位延迟,对于与x轴角度为 Ψ,相位差为 Φ 的波片,其Jones矩阵为 Jones矩阵的表示 为了对Jones矩阵所对应的偏振状态进行绘制,我们需要进

  • python光学仿真学习wxpython创建手速测试程序

    滚动条是什么大家自然都是知道的,可以非常直观地显示数据的变化,或者可以非常方便地改变某些数值. 此前在介绍按钮.静态文本.输入文本这三个控件时,相对来说比较乏味,所以这次我们采用需求引导的模式.假如想编写一个软件用来检测打字速度,同时能够非常直观地通过滚动条来显示出来,应该怎么写? 我们大致需要三个控件,文本输入控件用来输入文字:静态文本控件用于显示速度:滚动条用来动态地显示速度.同时,还需要知道系统的时间,总之,代码如下 import wx import time #时间模块 class te

  • Python光学仿真学习Gauss高斯光束在空间中的分布

    目录 Gauss光束强度的表达式为 如图所示 左上图和左下图表示激光传输过程中的其束腰半径的变化情况:右图则表示高斯光束某一横截面处激光的能量分布. 绘制代码如下 import matplotlib.pyplot as plt import numpy as np def setLabel(ax,*args): ax.set_xlabel(args[0]) ax.set_ylabel(args[1]) if len(args)==3: ax.set_zlabel(args[2]) def dra

  • python光学仿真实现光线追迹之空间关系

    目录 空间关系 相交判定 射线排序 线弧关系 点弧关系 空间关系 变化始于相遇,所以交点是一切的核心. 相交判定 首先考察一束光线能否打在某个平面镜上.光线被抽象成了一个列表[a,b,c],平面镜则被抽象成为由两个点构成的线段[(x1,y1),(x2,y2)].两条直线的交点问题属于初等数学范畴,需要先将线段转换成直线的形式,然后再求交点.但是两条直线的交点可能落在线段的外面,从而不具有判定的意义. 如果我们的光学系统中有大量的光学元件,那么如果有一种方法可以快速判断光线是否与光学元件有交点,将

随机推荐