Flink流处理引擎零基础速通之数据的抽取篇
目录
- 一、CDC
- 二、常见CDC的比较
- 三、Flink CDC
- 四、Flink CDC支持的数据库
- 五、阿里实现的FlinkCDC使用示例
- 依赖引入
- 基于table
- 基于sql
- 总结
一、CDC
CDC (Change Data Capture) ,在广义的概念上,只要能捕获数据变更的技术,都可以称为 CDC 。但通常我们说的CDC 技术主要面向数据库(包括常见的mysql,Oracle, MongoDB等)的变更,是一种用于捕获数据库中数据变更的技术。
二、常见CDC的比较
常见的主要包括Flink CDC,DataX,Canal,Sqoop,Kettle,Oracle Goldengate,Debezium等。
- DataX,Sqoop和kettle的CDC实现技术主要是基于查询的方式实现的,通过离线调度查询作业,实现批处理请求。这种作业方式无法保证数据的一致性,实时性也较差。
- Flink CDC,Canal,Debezium和Oracle Goldengate是基于日志的CDC技术。这种技术,利用流处理的方式,实时处理日志数据,保证了数据的一致性,为其他服务提供了实时数据。
三、Flink CDC
2020年 Flink cdc 首次在 Flink forward 大会上官宣, 由 Jark Wu & Qingsheng Ren 两位大佬提出。
Flink CDC connector 可以捕获在一个或多个表中发生的所有变更。该模式通常有一个前记录和一个后记录。Flink CDC connector 可以直接在Flink中以非约束模式(流)使用,而不需要使用类似 kafka 之类的中间件中转数据。
四、Flink CDC支持的数据库
PS:
Flink CDC 2.2才新增OceanBase,PolarDB-X,SqlServer,TiDB 四种数据源接入,均支持全量和增量一体化同步。
截止到目前FlinkCDC已经支持12+数据源。
五、阿里实现的FlinkCDC使用示例
依赖引入
<!-- flink table支持 --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-java</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <!-- 阿里实现的flink mysql CDC --> <dependency> <groupId>com.alibaba.ververica</groupId> <artifactId>flink-connector-mysql-cdc</artifactId> <version>1.4.0</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.28</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.80</version> </dependency> <!-- jackson报错解决 --> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-core</artifactId> <version>${jackson.version}</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>${jackson.version}</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.module</groupId> <artifactId>jackson-module-parameter-names</artifactId> <version>${jackson.version}</version> </dependency>
基于table
package spendreport.cdc; import com.alibaba.fastjson.JSONObject; import com.alibaba.ververica.cdc.connectors.mysql.MySQLSource; import com.alibaba.ververica.cdc.connectors.mysql.table.StartupOptions; import com.alibaba.ververica.cdc.debezium.DebeziumSourceFunction; import com.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema; import io.debezium.data.Envelope; import java.util.List; import org.apache.flink.api.common.restartstrategy.RestartStrategies; import org.apache.flink.api.common.typeinfo.BasicTypeInfo; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.streaming.api.CheckpointingMode; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.CheckpointConfig; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.util.Collector; import org.apache.kafka.connect.data.Field; import org.apache.kafka.connect.data.Struct; import org.apache.kafka.connect.source.SourceRecord; ; /** * @author zhengwen **/ public class TestMySqlFlinkCDC { public static void main(String[] args) throws Exception { //1.创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); //2.Flink-CDC 将读取 binlog 的位置信息以状态的方式保存在 CK,如果想要做到断点续传, 需要从 Checkpoint 或者 Savepoint 启动程序 //2.1 开启 Checkpoint,每隔 5 秒钟做一次 CK env.enableCheckpointing(5000L); //2.2 指定 CK 的一致性语义 env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); //2.3 设置任务关闭的时候保留最后一次 CK 数据 env.getCheckpointConfig().enableExternalizedCheckpoints( CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION); //2.4 指定从 CK 自动重启策略 env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 2000L)); DebeziumSourceFunction<String> sourceFunction = MySQLSource.<String>builder() .hostname("127.0.0.1") .serverTimeZone("GMT+8") //时区报错增加这个设置 .port(3306) .username("root") .password("123456") .databaseList("wz") .tableList("wz.user_info") //注意表一定要写库名.表名这种,多个,隔开 .startupOptions(StartupOptions.initial()) //自定义转json格式化 .deserializer(new MyJsonDebeziumDeserializationSchema()) //自带string格式序列化 //.deserializer(new StringDebeziumDeserializationSchema()) .build(); DataStreamSource<String> streamSource = env.addSource(sourceFunction); //TODO 可以keyBy,比如根据table或type,然后开窗处理 //3.打印数据 streamSource.print(); //streamSource.addSink(); 输出 //4.执行任务 env.execute("flinkTableCDC"); } private static class MyJsonDebeziumDeserializationSchema implements com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema<String> { @Override public void deserialize(SourceRecord sourceRecord, Collector<String> collector) throws Exception { Struct value = (Struct) sourceRecord.value(); Struct source = value.getStruct("source"); //获取数据库名称 String db = source.getString("db"); String table = source.getString("table"); //获取数据类型 String type = Envelope.operationFor(sourceRecord).toString().toLowerCase(); if (type.equals("create")) { type = "insert"; } JSONObject jsonObject = new JSONObject(); jsonObject.put("database", db); jsonObject.put("table", table); jsonObject.put("type", type); //获取数据data Struct after = value.getStruct("after"); JSONObject dataJson = new JSONObject(); List<Field> fields = after.schema().fields(); for (Field field : fields) { String field_name = field.name(); Object fieldValue = after.get(field); dataJson.put(field_name, fieldValue); } jsonObject.put("data", dataJson); collector.collect(JSONObject.toJSONString(jsonObject)); } @Override public TypeInformation<String> getProducedType() { return BasicTypeInfo.STRING_TYPE_INFO; } } }
运行效果
PS:
- 操作数据库的增删改就会立马触发
- 这里是自定义的序列化转json格式字符串,自带的字符串序列化也是可以的(可以自己试试打印的内容)
基于sql
package spendreport.cdc; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; /** * @author zhengwen **/ public class TestMySqlFlinkCDC2 { public static void main(String[] args) throws Exception { //1.创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env); //2.创建 Flink-MySQL-CDC 的 Source String connectorName = "mysql-cdc"; String dbHostName = "127.0.0.1"; String dbPort = "3306"; String dbUsername = "root"; String dbPassword = "123456"; String dbDatabaseName = "wz"; String dbTableName = "user_info"; String tableSql = "CREATE TABLE t_user_info (" + "id int,mobile varchar(20)," + "user_name varchar(30)," + "real_name varchar(60)," + "id_card varchar(20)," + "org_name varchar(100)," + "user_stars int," + "create_by int," // + "create_time datetime," + "update_by int," // + "update_time datetime," + "is_deleted int) " + " WITH (" + " 'connector' = '" + connectorName + "'," + " 'hostname' = '" + dbHostName + "'," + " 'port' = '" + dbPort + "'," + " 'username' = '" + dbUsername + "'," + " 'password' = '" + dbPassword + "'," + " 'database-name' = '" + dbDatabaseName + "'," + " 'table-name' = '" + dbTableName + "'" + ")"; tableEnv.executeSql(tableSql); tableEnv.executeSql("select * from t_user_info").print(); env.execute(); } }
运行效果:
总结
既然是基于日志,那么数据库的配置文件肯定要开启日志功能,这里mysql需要开启内容
server-id=1
log_bin=mysql-bin
binlog_format=ROW #目前还只能支持行
expire_logs_days=30
binlog_do_db=wz #这里binlog的库如果有多个就再写一行,千万不要写成用,隔开
- 实时性确实高,比那些自动任务定时取体验号百倍
- 流示的确实丝滑
最后肯定证明这种方式同步数据可行,而且实时性特高,但是就是不知道我们的目标数据库是否可以开启这些日志配置。UP!
到此这篇关于Flink流处理引擎零基础速通之数据的抽取篇的文章就介绍到这了,更多相关Flink数据的抽取内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!