面向JavaScript入门初学者的二叉搜索树算法教程

目录
  • 什么是二叉搜索树 (BST)?
  • 二叉树基本遍历(中序、后序、前序)
    • 中序遍历
    • 后序遍历
    • 前序遍历
  • 什么是有效的二叉搜索树?
  • 如何找到二叉树最大深度
  • 如何找到两个树节点之间的最小公共祖先
  • 😊 结尾想说的

在本文中,我将尽力解释一些您在编码面试之前应该学习的核心算法。

什么是二叉搜索树 (BST)?

在编码面试中很常见,BST 是一种树状数据结构,顶部有一个根。它们是存储数值的好方法,因为它们的有序性质允许快速搜索和查找。

与普通树相比,BST 具有以下特性:

  • 每个左孩子的值都比它的父母小
  • 每个右孩子的值都比它的父母大
  • 每个节点可以包含 0 到 2 个子节点。

下图应该更清楚地说明事情。

二叉树节点的定义

我们通常在 Javascript 中定义一个二叉树节点,函数如下:

 function TreeNode(val, left, right) {
     this.val = val
     this.left = left
     this.right = right
 }

二叉树基本遍历(中序、后序、前序)

首先要知道如何遍历 BST 的每个节点。这允许我们在 BST 的所有节点上执行一个功能。例如,如果我们想x在 BST 中找到一个值,我们就需要节点。

有三种主要方法可以做到这一点。幸运的是,他们有共同的主题。

中序遍历

递归算法是开始使用二叉树中序遍历的最简单方法。思路如下:

  • 如果节点为空,则什么都不做——否则,递归调用节点左子节点上的函数。
  • 然后,遍历完所有左子节点后,对节点进行一些操作。我们当前的节点保证是最左边的节点。
  • 最后,调用 node.right 上的函数。

Inorder 算法从左、中、右遍历树节点。

const inorder = (root) => {
    const nodes = []
    if (root) {
        inorder(root.left)
        nodes.push(root.val)
        inorder(root.right)
    }
    return nodes
}
// 对于我们的示例树,将返回 [1,2,3,4,5,6]

后序遍历

递归算法是开始后序遍历的最简单方法。

  • 如果节点为空,则什么都不做——否则,递归调用节点左子节点上的函数。
  • 当没有更多的左孩子时,调用 node.right 上的函数。
  • 最后,在节点上做一些操作。

后序遍历从左、右、中访问树节点。

const postorder = (root) => {
    const nodes = []
    if (root) {
        postorder(root.left)
        postorder(root.right)
        nodes.push(root.val)
    }
    return nodes
}
// 对于我们的示例树,将返回 [1,3,2,6,5,4]

前序遍历

递归算法是开始前序遍历的最简单方法。

  • 如果节点为空,则什么都不做——否则,在节点上做一些操作。
  • 遍历节点的左子节点并重复。
  • 遍历到节点的右孩子并重复。

后序遍历从中、左、右访问树节点。

const preorder = (root) => {
    const nodes = []
    if (root) {
        nodes.push(root.val)
        preorder(root.left)
        preorder(root.right)
    }
    return nodes
}
// 对于我们的示例树,将返回 [4,2,1,3,5,6]

什么是有效的二叉搜索树?

有效的二叉搜索树 (BST) 具有所有值小于父节点的左子节点,以及值大于父节点的所有右子节点。
要验证一棵树是否是有效的二叉搜索树:

  • 定义当前节点可以具有的最小值和最大值
  • 如果节点的值不在这些范围内,则返回 false
  • 递归验证节点的左孩子,最大边界设置为节点的值
  • 递归验证节点的右孩子,最小边界设置为节点的值
const isValidBST = (root) => {
    const helper = (node, min, max) => {
        if (!node) return true
        if (node.val <= min || node.val >= max) return false
        return helper(node.left, min, node.val) && helper(node.right, node.val, max)
    }
    return helper(root, Number.MIN_SAFE_INTEGER, Number.MAX_SAFE_INTEGER)
}

如何找到二叉树最大深度

在这里,算法试图找到我们 BST 的高度/深度。换句话说,我们正在查看 BST 包含多少个“级别”。

  • 如果节点为空,我们返回 0 因为它没有添加任何深度
  • 否则,我们将 + 1 添加到我们当前的深度(我们遍历了一层)
  • 递归计算节点子节点的深度并返回node.left和node.right之间的最大和
const maxDepth = function(root) {
    const calc = (node) => {
        if (!node) return 0
        return Math.max(1 + calc(node.left), 1 + calc(node.right))
    }
    return calc(root)
};

如何找到两个树节点之间的最小公共祖先

让我们提高难度。我们如何在我们的二叉树中找到两个树节点之间的共同祖先?让我们看一些例子。

在这棵树中,3和1的最低共同祖先是2。3和2的LCA是2。6和1和6的LCA是4。

看到这里的模式了吗?两个树节点之间的 LCA 要么是节点本身之一(3 和 2 的情况),要么是父节点,其中第一个子节点位于其左子树中的某处,而第二个子节点位于其右子树中的某处。

寻找两个树节点 p 和 q 之间的最低共同祖先(LCA)的算法如下:

  • 验证是否在左子树或右子树中找到 p 或 q
  • 然后,验证当前节点是 p 还是 q
  • 如果在左子树或右子树中找到 p 或 q 之一,并且 p 或 q 之一是节点本身,我们就找到了 LCA
  • 如果在左子树或右子树中都找到了 p 和 q,我们就找到了 LCA
const lowestCommonAncestor = function(root, p, q) {
    let lca = null
    const isCommonPath = (node) => {
        if (!node) return false
        var isLeft = isCommonPath(node.left)
        var isRight = isCommonPath(node.right)
        var isMid = node == p || node == q
        if (isMid && isLeft || isMid && isRight || isLeft && isRight) {
            lca = node
        }
        return isLeft || isRight || isMid
    }
    isCommonPath(root)
    return lca
};

😊 结尾想说的

到此,我们已经学会了如何遍历、验证和计算 BST 的深度。

到此这篇关于面向JavaScript入门初学者的二叉搜索树算法教程的文章就介绍到这了,更多相关JavaScript二叉搜索树算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • javascript数据结构之二叉搜索树实现方法

    本文实例讲述了javascript二叉搜索树实现方法.分享给大家供大家参考,具体如下: 二叉搜索树:顾名思义,树上每个节点最多只有二根分叉:而且左分叉节点的值 < 右分叉节点的值 . 特点:插入节点.找最大/最小节点.节点值排序 非常方便 二叉搜索树-javascript实现 <script type="text/javascript"> // <![CDATA[ //打印输出 function println(msg) { document.write(msg

  • 如何利用JavaScript实现二叉搜索树

    计算机科学中最常用和讨论最多的数据结构之一是二叉搜索树.这通常是引入的第一个具有非线性插入算法的数据结构.二叉搜索树类似于双链表,每个节点包含一些数据,以及两个指向其他节点的指针:它们在这些节点彼此相关联的方式上有所不同.二叉搜索树节点的指针通常被称为"左"和"右",用来指示与当前值相关的子树.这种节点的简单 JavaScript 实现如下: var node = { value: 125, left: null, right: null }; 从名称中可以看出,二

  • javascript算法之二叉搜索树的示例代码

    什么是二叉树 二叉树就是树的每个节点最多只能有两个子节点 什么是二叉搜索树 二叉搜索树在二叉树的基础上,多了一个条件,就是二叉树在插入值时,若插入值比当前节点小,就插入到左节点,否则插入到右节点:若插入过程中,左节点或右节点已经存在,那么继续按如上规则比较,直到遇到一个新的节点. 二叉搜索树的特性 二叉搜索树由于其独特的数据结构,使得其无论在增删,还是查找,时间复杂度都是O(h),h为二叉树的高度.因此二叉树应该尽量的矮,即左右节点尽量平衡. 二叉搜索树的构造 要构造二叉搜索树,首先要构造二叉树

  • JavaScript实现二叉搜索树

    JavaScript中的搜索二叉树实现,供大家参考,具体内容如下 二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树 二叉搜索树是一颗二叉树, 可以为空:如果不为空,满足以下性质: 非空左子树的所有键值小于其根结点的键值 非空右子树的所有键值大于其根结点的键值 也就是左结点值想<根结点值<右节点值 左.右子树本身也都是二叉搜索树 二叉搜索树的操作 insert(key):向树中插入一个新的键 search(key):在树中查找一个键,如果结点存在,则返回tr

  • Javascript实现从小到大的数组转换成二叉搜索树

    废话不多说了,直接给大家贴代码了,具体代码如下所示: var Array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; var Tree = createTree(Array); console.log(Tree); // 构造一个节点 function Node(nodeData, leftData, rightData) { this.nodeData = nodeData; this.leftData = leftData; this.rightData = rig

  • 面向JavaScript入门初学者的二叉搜索树算法教程

    目录 什么是二叉搜索树 (BST)? 二叉树基本遍历(中序.后序.前序) 中序遍历 后序遍历 前序遍历 什么是有效的二叉搜索树? 如何找到二叉树最大深度 如何找到两个树节点之间的最小公共祖先

  • JavaScript二叉搜索树构建操作详解

    目录 前言 什么是二叉搜索树 构建一颗二叉搜索树 二叉搜索树的操作 向二叉搜索树中插入数据 查找二叉搜索树中的数据 删除二叉搜索树的某个节点 前驱后继节点 删除一个节点的三种情况 实现代码 完整代码 总结 前言 前面我们介绍了二叉树这个数据结构以及二叉树的遍历算法,这篇文章我们来学习一下一个特殊的二叉树——二叉搜索树(BST Binary Search Tree),也叫二叉排序树.二叉查找树. 什么是二叉搜索树 二叉搜索树首先它是一棵二叉树,而且还满足下面这些特质: 对于任何一个非空节点来说,它

  • 二叉搜索树的插入与删除(详细解析)

    题目:创建一个类,类中的数据成员时一棵二叉搜索树,对外提供的接口有添加结点和删除结点这两种方法.用户不关注二叉树的情况.要求我们给出这个类的结构以及实现类中的方法. 思路添加结点:添加结点其实很容易,我们只需要找到结点所行对应的位置就可以了,而且没有要求是平衡的二叉搜索树,因此每次添加结点都是在叶子结点上操作,不需要修改二叉搜索树整体的结构.要找出添加节点在二叉搜索树中的位置,可以用一个循环解决.判断插入结点与当前头结点的大小,如果大于头结点则继续搜索右子树,如果小于头结点则继续搜索左子树.直到

  • Java 实现二叉搜索树的查找、插入、删除、遍历

    由于最近想要阅读下JDK1.8 中HashMap的具体实现,但是由于HashMap的实现中用到了红黑树,所以我觉得有必要先复习下红黑树的相关知识,所以写下这篇随笔备忘,有不对的地方请指出- 学习红黑树,我觉得有必要从二叉搜索树开始学起,本篇随笔就主要介绍Java实现二叉搜索树的查找.插入.删除.遍历等内容. 二叉搜索树需满足以下四个条件: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 任意节点的左.右子

  • Python实现二叉搜索树BST的方法示例

    二叉排序树(BST)又称二叉查找树.二叉搜索树 二叉排序树(Binary Sort Tree)又称二叉查找树.它或者是一棵空树:或者是具有下列性质的二叉树: 1.若左子树不空,则左子树上所有结点的值均小于根结点的值: 2.若右子树不空,则右子树上所有结点的值均大于根节点的值: 3.左.右子树也分别为二叉排序树. 求树深度 按序输出节点值(使用中序遍历) 查询二叉搜索树中一个具有给点关键字的结点,返回该节点的位置.时间复杂度是O(h),h是树的高度. 递归/迭代求最大关键字元素 递归/迭代求最小关

  • Java删除二叉搜索树的任意元素的方法详解

    本文实例讲述了Java删除二叉搜索树的任意元素的方法.分享给大家供大家参考,具体如下: 一.删除思路分析 在删除二叉搜索树的任意元素时,会有三种情况: 1.1 删除只有左孩子的节点 节点删除之后,将左孩子所在的二叉树取代其位置:连在原来节点父亲元素右节点的位置,比如在图中需要删除58这个节点. 删除58这个节点后,如下图所示: 1.2 删除只有右孩子的节点: 节点删除之后,将右孩子所在的二叉树取代其位置:连在原来节点的位置,比如在下图中需要删除58这个节点. 删除58这个节点后,如下图所示: 这

  • Java删除二叉搜索树最大元素和最小元素的方法详解

    本文实例讲述了Java删除二叉搜索树最大元素和最小元素的方法.分享给大家供大家参考,具体如下: 在前面一篇<Java二叉搜索树遍历操作>中完成了树的遍历,这一节中将对如何从二叉搜索树中删除最大元素和最小元素做介绍: 我们要想删除二分搜索树的最小值和最大值,就需要先找到二分搜索树的最小值和最大值,其实也还是很容易的,因为根据二叉搜索树的特点,它的左子树一定比当前节点要小,所以二叉搜索树的最小值一定是左子树一直往下走,一直走到底.同样在二叉搜索树中,右子树节点值,一定比当前节点要大,所以右子树一直

  • Java实现二叉搜索树的插入、删除功能

    二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode(int val) { this.val = val; } } 中序遍历 中序遍历:从根节点开始遍历,遍历顺序是:左子树->当前节点->右子树,在中序遍历中,对每个节点来说: 只有当它的左子树都被遍历过了(或者没有左子树),它才会被遍历到.在遍历右子树之前,一定会先遍历当前节点. 中序遍历得到的第一个节点是没

  • Java深入了解数据结构之二叉搜索树增 插 删 创详解

    目录 ①概念 ②操作-查找 ③操作-插入 ④操作-删除 1. cur.left == null 2. cur.right == null 3. cur.left != null && cur.right != null ⑤性能分析 ⑥完整代码 ①概念 二叉搜索树又称二叉排序树,它或者是一棵空树**,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值 它的左右子树也分别为二叉搜索树 ②操作-查找

随机推荐