python 实现朴素贝叶斯算法的示例
特点
- 这是分类算法贝叶斯算法的较为简单的一种,整个贝叶斯分类算法的核心就是在求解贝叶斯方程P(y|x)=[P(x|y)P(y)]/P(x)
- 而朴素贝叶斯算法就是在牺牲一定准确率的情况下强制特征x满足独立条件,求解P(x|y)就更为方便了
- 但基本上现实生活中,没有任何关系的两个特征几乎是不存在的,故朴素贝叶斯不适合那些关系密切的特征
from collections import defaultdict import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from loguru import logger class NaiveBayesScratch(): """朴素贝叶斯算法Scratch实现""" def __init__(self): # 存储先验概率 P(Y=ck) self._prior_prob = defaultdict(float) # 存储似然概率 P(X|Y=ck) self._likelihood = defaultdict(defaultdict) # 存储每个类别的样本在训练集中出现次数 self._ck_counter = defaultdict(float) # 存储每一个特征可能取值的个数 self._Sj = defaultdict(float) def fit(self, X, y): """ 模型训练,参数估计使用贝叶斯估计 X: 训练集,每一行表示一个样本,每一列表示一个特征或属性 y: 训练集标签 """ n_sample, n_feature = X.shape # 计算每个类别可能的取值以及每个类别样本个数 ck, num_ck = np.unique(y, return_counts=True) self._ck_counter = dict(zip(ck, num_ck)) for label, num_label in self._ck_counter.items(): # 计算先验概率,做了拉普拉斯平滑处理,即计算P(y) self._prior_prob[label] = (num_label + 1) / (n_sample + ck.shape[0]) # 记录每个类别样本对应的索引 ck_idx = [] for label in ck: label_idx = np.squeeze(np.argwhere(y == label)) ck_idx.append(label_idx) # 遍历每个类别 for label, idx in zip(ck, ck_idx): xdata = X[idx] # 记录该类别所有特征对应的概率 label_likelihood = defaultdict(defaultdict) # 遍历每个特征 for i in range(n_feature): # 记录该特征每个取值对应的概率 feature_val_prob = defaultdict(float) # 获取该列特征可能的取值和每个取值出现的次数 feature_val, feature_cnt = np.unique(xdata[:, i], return_counts=True) self._Sj[i] = feature_val.shape[0] feature_counter = dict(zip(feature_val, feature_cnt)) for fea_val, cnt in feature_counter.items(): # 计算该列特征每个取值的概率,做了拉普拉斯平滑,即为了计算P(x|y) feature_val_prob[fea_val] = (cnt + 1) / (self._ck_counter[label] + self._Sj[i]) label_likelihood[i] = feature_val_prob self._likelihood[label] = label_likelihood def predict(self, x): """ 输入样本,输出其类别,本质上是计算后验概率 **注意计算后验概率的时候对概率取对数**,概率连乘可能导致浮点数下溢,取对数将连乘转化为求和 """ # 保存分类到每个类别的后验概率,即计算P(y|x) post_prob = defaultdict(float) # 遍历每个类别计算后验概率 for label, label_likelihood in self._likelihood.items(): prob = np.log(self._prior_prob[label]) # 遍历样本每一维特征 for i, fea_val in enumerate(x): feature_val_prob = label_likelihood[i] # 如果该特征值出现在训练集中则直接获取概率 if fea_val in feature_val_prob: prob += np.log(feature_val_prob[fea_val]) else: # 如果该特征没有出现在训练集中则采用拉普拉斯平滑计算概率 laplace_prob = 1 / (self._ck_counter[label] + self._Sj[i]) prob += np.log(laplace_prob) post_prob[label] = prob prob_list = list(post_prob.items()) prob_list.sort(key=lambda v: v[1], reverse=True) # 返回后验概率最大的类别作为预测类别 return prob_list[0][0] def main(): X, y = load_iris(return_X_y=True) xtrain, xtest, ytrain, ytest = train_test_split(X, y, train_size=0.8, shuffle=True) model = NaiveBayesScratch() model.fit(xtrain, ytrain) n_test = xtest.shape[0] n_right = 0 for i in range(n_test): y_pred = model.predict(xtest[i]) if y_pred == ytest[i]: n_right += 1 else: logger.info("该样本真实标签为:{},但是Scratch模型预测标签为:{}".format(ytest[i], y_pred)) logger.info("Scratch模型在测试集上的准确率为:{}%".format(n_right * 100 / n_test)) if __name__ == "__main__": main()
以上就是python 实现朴素贝叶斯算法的示例的详细内容,更多关于python实现朴素贝叶斯算法的资料请关注我们其它相关文章!
赞 (0)